2024-2025学年广西河池市高一数学下学期7月期末考试
(含答案)
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置。
2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷,草稿纸和答题卡上的非答题区域均无效。
3.选择题用2B铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。
4.考试结来后,请将答题卡上交。
5.本卷主要考查内容:必修第二册。
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某市市场监管局为了了解饮料的质量,从该市区某超市在售的50种饮料中抽取了30种饮料,对其质量进行了检查.在这个问题中,30是()
A.总体B.个体C.样本D.样本量
2.矩形的直观图是()
A.正方形B.矩形C.三角形D.平行四边形
3.下列说法中正确的是()
A.随机事件发生的频率就是这个随机事件发生的概率
B.在n次随机试验中,一个随机事件A发生的频率具有确定性
C.随着试验次数n的增大,一个随机事件A发生的频率会逐渐稳定于事件A发生的概率
D.在同一次试验中,每个试验结果出现的频率之和不一定等于1
4.已知圆锥的侧面展开图是半径为6.圆心角为的扇形,则该圆锥的体积为()
A.B.C.D.
5.国家队射击运动员小王在某次训练中10次射击成绩(单位:环)如下:6,5,9,6,4,8,9,8,7,5,则这组数据的第60百分位数为()
A.6.5B.7C.7.5D.8
6.欧拉恒等式(i为虚数单位,e为自然对数的底数)被称为数学中最奇妙的公式.它是复分析中欧拉公式的特例:当自变量时,,得.根据欧拉公式,复数在复平面上所对应的点在()
A.第一象限B.第二象限C.第三象限D.第四象限
7.如图,在中,,P为CD的中点,则()
A.B.C.D.
8.如图,在正四面体ABCD中.点E是线段AD上靠近点D的四等分点,则异面直线EC与BD所成角的余弦值为()
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。
9.已知复数,则下列说法正确的是()
A.若是实数,则与的虚部互为相反数
B.若且,则在复平面内对应的点关于实轴对称
C.若,则
D.若,则
10.已知m,n是两条不同的直线,是三个不同的平面,则下列说法正确的是()
A.若,则B.若.则
C.若,则D.若.则
11.口袋中装有大小质地完全相同的白球和黑球各2个,从中不放回的依次取出2个球,事件“取出的两球同色”,事件“第一次取出的是白球”.事件“第二次取出的是白球”,事件“取出的两球不同色”,则()
A.B.A与B相互独立
C.A与C相互独立D.
三、填空题:本题共3小题,每小题5分,共15分。
12.已知向量与的夹角为,.则___________.
13.已知射击运动员甲击中靶心的概率为0.72.射击运动员乙击中靶心的概率为0.85,且甲、乙两人是否击中靶心互不影响.若甲、乙各射击一次·则至少有一人击中配心的概率为___________.
14.某工厂需要制作一个如图所示的模型,该模型为长方体挖去一个四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,,,那么该模型的表面积为___________.
四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及演算步骤。
15.(本小题满分13分)
已知的内角A,B,C的对边分别为a,b,c,.
(1)求A;
(2)若,请判断是锐角三角形,直角三角形还是钝角三角形?
16.(本小题满分15分)
团建的目的是增强团队凝聚力和团队融合度,提高团队间熟悉感和协助能力,在紧张的工作中放松,能够更好地完成日常工作.某文化传媒公司团建活动是投篮比赛,其中10名员工的投中个数(每人投10个球)统计表如下:
编号
1
2
3
4
5
6
7
8
9
10
投中个数
7
9
8
9
8
10
7
7
6
9
(1)求这10名员工在本次投篮比赛中投中个数的平均数和方差;
(2)从投进9个球和10个球的员工中选2人分享活动感受,求这2人恰好都是投进9个球的员工的概率.
17.(本小题满分15分)
如图,在正方体中,E,F分别为棱的中点.
(1)求证:;
(2)求证:平面平面