2022-2021学年度其次学期高一级第一次段考
数学试题
(考试时间:120分钟,满分:150)
一、选择题(每题5分,共50分)
1.函数f(x)=sin2x的一个周期为 ()
A.B.C.1D.2
2.的值等于()
A. B.- C.D.-
3.化简:=()
....
甲乙08501247322199876421336
甲乙
08
501247
322199
876421336
9444
152
A.35,29B.34,29
C.36,25D.44,25
5.如图所示,角的终边与单位圆交于点,
则的值为()
A. B.C. D.
6.在100个零件中,有一级品20个、二级品30个、三级品50个,从中抽取20个作为样本.
①将零件编号为00,01,…,99,抽签取出20个;
②接受系统抽样法,将全部零件分成20组,每组5个,然后每组中随机抽取1个;
③接受分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.
对于上述问题,下面说法正确的是()
A.不论接受哪一种抽样方法,这100个零件中每一个被抽到的概率都是0.2
B.①②两种抽样方法,这100个零件中每一个被抽到的概率为0.2,③并非如此
C.①③两种抽样方法,这100个零件中每一个被抽到的概率为0.2,②并非如此
D.接受不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的
7.读程序
甲:INPUTi=1乙:INPUTi=1000
S=0S=0
WHILEi<=1000DO
S=S+iS=S+i
i=i+li=i-1
WENDLOOPUNTILi<1
PRINTSPRINTS
ENDEND
对甲乙两程序和输出结果推断正确的是()
A.程序不同,结果不同B.程序不同,结果相同
C.程序相同,结果不同D.程序相同,结果相同
8.已知sin(eq\f(?,4)+α)=eq\f(eq\r(3),2),则sin(eq\f(3?,4)-α)值为()
A.eq\f(1,2) B.—eq\f(1,2) C.eq\f(eq\r(3),2) D.—eq\f(eq\r(3),2)
9、已知圆的方程为,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是ks5u()
A.B.C.D.
10.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(eq\r(2),-eq\r(2)),角速度为1,那么点P到x轴的距离d关于时间t的函数图象大致为材()
二、填空题(每题5分,共20分)
11.把七进制数305(7)化为十进制数,则=______.
12.某商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
月平均气温x(℃)
17
13
8
2
销售量y(件)
24
33
40
55
由表中数据算出线性回归方程y=bx+a中的b≈-2,气象部门猜想下个月的平均气温约为6℃,据此估量该商场下个月毛衣销售量约为
13、定义某种运算,运算原理如图所示,则式子:
的值是