北师大版8年级数学上册期中测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题20分)
一、单选题(7小题,每小题2分,共计14分)
1、定义:若,则,x称为以10为底的N的对数,简记为,其满足运算法则:.例如:因为,所以,亦即;.根据上述定义和运算法则,计算的结果为(???????)
A.5 B.2 C.1 D.0
2、按如图所示的运算程序,能使输出y值为1的是(?????)
A. B. C. D.
3、下列各点在第二象限的是
A., B. C. D.
4、点P(3,-2)所在的象限是(???????)
A.第—象限 B.第二象限 C.第三象限 D.第四象限
5、下列计算正确的是()
A.=2 B.=±2 C.=2 D.=±2
6、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,,根据图中图形面积之间的关系及勾股定理,可直接得到等式(?????)
A. B.
C. D.
7、已知a=,b=2+,则a,b的关系是()
A.相等 B.互为相反数
C.互为倒数 D.互为有理化因式
二、多选题(3小题,每小题2分,共计6分)
1、如图,实数a,b在数轴上的对应点在原点两侧,下列各式成立的是(???????)
A. B. C. D.
2、下列各数中的无理数是(???????)
A. B. C. D.
3、在下列各式中不正确的是(?????)
A.=﹣2 B.=3 C.=8 D.=2
第Ⅱ卷(非选择题80分)
三、填空题(10小题,每小题2分,共计20分)
1、阅读材料:若ab=N,则b=logaN,称b为以a为底N的对数,例如23=8,则log28=log223=3.根据材料填空:log39=_____.
2、五张背面完全相同的卡片上分别写有、、-31、、0.101001001…(相邻两个1间依次多1个0)五个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,抽到有理数的概率是______.
3、如果方程无实数解,那么的取值范围是_______.
4、如图的平面直角坐标系中,已知点A(-3,0)、B(0,4),将△OAB沿x轴作连续无滑动的翻滚,依次得到三角形①,②,③,④.则第?个三角形的直角顶点的坐标是___________.
5、若,则_________.
6、在,0.5,0,,,这些数中,是无理数的是_____.
7、化简:①______;
②______;
③______.
8、如图,数轴上点A表示的数为a,化简:a_____.
9、若,则_______________________.
10、如图,在四边形ABCD中,,,,,,那么四边形ABCD的面积是___________.
四、解答题(6小题,每小题10分,共计60分)
1、观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数,为“同心有理数对”,记为,如:数对,,都是“同心有理数对”.
(1)数对,是“同心有理数对”的是;
(2)若是“同心有理数对”,求的值;
(3)若是“同心有理数对”,则“同心有理数对”(填“是”或“不是”).
2、中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:
(1)试说明:a2+b2=c2;
(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.
3、当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某种型号的汽车的撞击影响可以用公式I=2v2来表示,其中v(千米/分)表示汽车的速度.假设某种型号的车在一次撞击试验中测得撞击影响为51.请你求一下该车撞击时的车速是多少.(精确到0.1千米/分)
4、(1)计算:(﹣2)2﹣(π﹣3.14)0+;
(2)化简:(x﹣3)(x+3)+x(2﹣x).
5、如图,中,是边上的高,将沿所在的直线翻折,使点落在边上的点处.
若,求的面积;
求证:.
6、计算:.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据新运算的定义和法则进行计算即可得.
【详解】
解:原式,
,
,
,
,
故选:C.
【考点】
本题考查了新定义下的实数运算,掌握