河北省新乐市中考数学真题分类(勾股定理)汇编专题测评
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题14分)
一、单选题(7小题,每小题2分,共计14分)
1、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,,根据图中图形面积之间的关系及勾股定理,可直接得到等式(?????)
A. B.
C. D.
2、已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为(???????)
A.5 B.25 C. D.5或
3、如图,中,,一同学利用直尺和圆规完成如下操作:
①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于的长为半径画弧,两弧交点K,作射线CK;
②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于N,分别以M、N为圆心,以大于的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.
请你观察图形,根据操作结果解答下列问题;过点D作交AB的延长线于点F,若,,则CE的长为(???????)
A.13 B. C. D.
4、《九章算术》被尊为古代数学“群经之首”,其卷九勾股定理篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深等于1寸,锯道长1尺,则圆形木材的直径是(???????)(1尺=10寸)
A.12寸 B.13寸 C.24寸 D.26寸
5、以下列各组数的长为边作三角形,不能构成直角三角形的是(???????)
A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,15
6、如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()
A.13米 B.12米 C.5米 D.米
7、如图,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,连接AE,BD交于点F,则BF的长为(???????)
A. B. C. D.
第Ⅱ卷(非选择题86分)
二、填空题(8小题,每小题2分,共计16分)
1、一根直立于水中的芦节(BD)高出水面(AC)2米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=6米,水的深度(AB)为________米
2、《九章算术》是我国古代数学名著,书中有下列问题:“今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地,问木长几何?”其意思为:今有墙高1丈,倚木杆于墙,使木之上端与墙平齐,牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.问木杆是多长?(1丈=10尺)设木杆长为x尺根据题意,可列方程为______.
3、如图,在四边形ABCD中,,,,,,那么四边形ABCD的面积是___________.
4、设,是直角三角形的两条直角边长,若该三角形的周长为24,斜边长为10,则的值为________.
5、如图,在△ABC中,AB=10,BC=9,AC=17,则BC边上的高为_______.
6、如图,在中,,将线段绕点顺时针旋转至,过点作,垂足为,若,,则的长为__.
7、勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.
(1)A,B间的距离为______km;
(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为______km.
8、如图,在四边形中,,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.
三、解答题(7小题,每小题10分,共计70分)
1、如图,将一个长方形纸片ABCD沿对角线AC折叠,点B落在点E处,AE交DC于点F,已知AB=4,BC=2,求折叠后重合部分的面积.
2、如图,小明家在一条东西走向的公路北侧米的点处,小红家位于小明家北米(米)、东米(米)点处.
(1)求小明家离小红家的距离;
(2)现要在公路上的点处建一个快递驿站,使最小,请确定点的位置,并求的最小值.
3、在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B.于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A前进,同时,另一艘搜救艇也从港口O出