云南省香格里拉市中考数学真题分类(勾股定理)汇编达标测试
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题14分)
一、单选题(7小题,每小题2分,共计14分)
1、在中,,,,的对边分别是a,b,c,若,,则的面积是(???????)
A. B. C. D.
2、如图,点,在直线的同侧,到的距离,到的距离,已知,是直线上的一个动点,记的最小值为,的最大值为,则的值为(???????)
A.160 B.150 C.140 D.130
3、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开4m后,发现下端刚好接触地面,则旗杆的高为(???)
A.7m B.7.5m C.8m D.9m
4、如图,在中,,,,平分交于D点,E,F分别是,上的动点,则的最小值为(???????)
A. B. C.3 D.
5、如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段AB=,使点A,B在小正方形的顶点上,设AB与网格线相交所成的锐角为α,则不同角度的α有(????????)
A.1种 B.2种 C.3种 D.4种
6、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()
A.3 B.4 C.5 D.6
7、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,,根据图中图形面积之间的关系及勾股定理,可直接得到等式(?????)
A. B.
C. D.
第Ⅱ卷(非选择题86分)
二、填空题(8小题,每小题2分,共计16分)
1、设,是直角三角形的两条直角边长,若该三角形的周长为24,斜边长为10,则的值为________.
2、如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为_______
3、(2011贵州安顺,16,4分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.
4、我国古代数学著作《九章算术》中的一个问题:一根竹子高1丈(1丈=10尺),折断后顶端落在离竹子底端3尺处,问折断处离地面的高度为多少尺?如图,设折断处离地面的高度为x尺,根据题意,可列出关于x方程为:__________.
5、《九章算术》是我国古代数学名著,书中有下列问题:“今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地,问木长几何?”其意思为:今有墙高1丈,倚木杆于墙,使木之上端与墙平齐,牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.问木杆是多长?(1丈=10尺)设木杆长为x尺根据题意,可列方程为______.
6、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_______尺.?
7、在△ABC中,∠C=90°,AB=10,AC=8,则BC的长为_____.
8、如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为__________.
三、解答题(7小题,每小题10分,共计70分)
1、拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.
(1)学校C会受噪声影响吗?为什么?
(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?
2、已如:如图,四边形中,,求四边形的面积.
3、在△ABC中,,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为直角三角形时,求t的值.
4、如图,中,,,是边上