广东省廉江市中考数学真题分类(勾股定理)汇编综合测试
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题14分)
一、单选题(7小题,每小题2分,共计14分)
1、已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()
A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0
2、在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于(????????)
A.10 B.8 C.6或10 D.8或10
3、如图,在中,,cm,cm,点、分别在、边上.现将沿翻折,使点落在点处.连接,则长度的最小值为(???????)
A.0 B.2 C.4 D.6
4、如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()
A. B.3 C.3 D.3
5、在△ABC中,,那么△ABC是(?????)
A.等腰三角形 B.钝角三角形 C.直角三角形 D.等腰直角三角形
6、如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段AB=,使点A,B在小正方形的顶点上,设AB与网格线相交所成的锐角为α,则不同角度的α有(????????)
A.1种 B.2种 C.3种 D.4种
7、下面图形能够验证勾股定理的有()个
A.4个 B.3个 C.2个 D.1个
第Ⅱ卷(非选择题86分)
二、填空题(8小题,每小题2分,共计16分)
1、如图,分别以此直角三角形的三边为直径在三角形的外部画半圆,,,则_________.
2、把一根长12厘米的木棒,从一端起顺次截下3厘米和5厘米的两段,用得到的三根木棒首尾依次相接,摆成的三角形形状是______.
3、如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_______s
4、我国古代九章算术中有数学发展史上著名的“葭生池中”问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:葭长几何?(1丈=10尺).意思是:有一个长方体池子,底面是边长为1丈的正方形,中间有芦苇,把高出水面1尺的芦苇拉向池边(芦苇没有折断),刚好贴在池边上,问:芦苇长多少尺?答:芦苇长____________尺.
5、若△ABC中,cm,cm,高cm,则BC的长为________cm.
6、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.
7、如图,矩形ABCD中,AD=6,AB=8.点E为边DC上的一个动点,△ADE与△ADE关于直线AE对称,当△CDE为直角三角形时,DE的长为__.
8、在Rt△ABC中,∠C=90°,AC=9,AB=15,则点C到AB的距离是_______.
三、解答题(7小题,每小题10分,共计70分)
1、在边长为8的等边ABC中,点D是边AB上的一动点,点E在边AC上,且CE=2AD,射线DE绕点D顺时针旋转60°交BC边于F.
(1)如图1,求证:∠AED=∠BDF;
(2)如图2,在射线DF上取DP=DE,连接BP,
①求∠DBP的度数;
②取边BC的中点M,当PM取最小值时,求AD的长.
2、(1)如图1是一个重要公式的几何解释,请你写出这个公式;
(2)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日发表在《新英格兰教育日志》上),现请你尝试证明过程.说明:.
3、数学中,常对同一个量(图形的面积、点的个数等)用两种不同的方法计算,从而建立相等关系,我们把这种思想叫“算两次”.“算两次”也称作富比尼原理,是一种重要的数学思想,由它可以推导出很多重要的公式.
(1)如图1,是一个长为,宽为的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形.
①用“算两次”的方法计算图2中阴影部分的面积:第一次列式为,第二次列式为,因为两次所列算式表示的是同一个图形的面积,所以可以得出等