基本信息
文件名称:2024-2025学年山东省蓬莱市中考数学真题分类(勾股定理)汇编达标测试试卷(含答案详解).docx
文件大小:471.15 KB
总页数:29 页
更新时间:2025-05-15
总字数:约9.51千字
文档摘要

山东省蓬莱市中考数学真题分类(勾股定理)汇编达标测试

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题14分)

一、单选题(7小题,每小题2分,共计14分)

1、勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(???)

A. B. C. D.

2、如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()

A. B.3 C.3 D.3

3、在△ABC中,,那么△ABC是(?????)

A.等腰三角形 B.钝角三角形 C.直角三角形 D.等腰直角三角形

4、如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是(???????)

A.6 B.8 C.9 D.15

5、在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于(????????)

A.10 B.8 C.6或10 D.8或10

6、《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈=10尺,1尺=10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()

A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12

C.x2+1002=(x+68)2 D.x2+(x+68)2=1002

7、下列四组数中,是勾股数的是()

A.5,12,13 B.4,5,6 C.2,3,4 D.1,,

第Ⅱ卷(非选择题86分)

二、填空题(8小题,每小题2分,共计16分)

1、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为_____.

2、《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B(如图).则芦苇长_____尺.

3、云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯一利用现有雪场改造而成的.下图左右两幅图分别是公园内云顶滑雪场U型池的实景图和示意图,该场地可以看作是从一个长方体中挖去了半个圆柱而成,它的横截面图中半圆的半径为,其边缘,点E在上,.一名滑雪爱好者从点A滑到点E,他滑行的最短路线长为_________m.

4、(2011贵州安顺,16,4分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.

5、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.

6、如图,CD是△ABC的中线,将△ACD沿CD折叠至,连接交CD于点E,交CB于点F,点F是的中点.若的面积为12,,则点F到AC的距离为______.

7、一根直立于水中的芦节(BD)高出水面(AC)2米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=6米,水的深度(AB)为________米

8、如图,在中,,于点D.E为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点落在CD的延长线上.若,,则的面积为__________.

三、解答题(7小题,每小题10分,共计70分)

1、如图,将一个长方形纸片ABCD沿对角线AC折叠,点B落在点E处,AE交DC于点F,已知AB=4,BC=2,求折叠后重合部分的面积.

2、点P到y轴的距离与它到点A(-8,2)的距离都等于13,求点P的坐标。

3、如图是一个长方形的大门,小强拿着一根竹竿要通过大门.