基本信息
文件名称:2024-2025学年度吉林省扶余市中考数学真题分类(勾股定理)汇编重点解析试题(含答案解析).docx
文件大小:512.7 KB
总页数:27 页
更新时间:2025-05-15
总字数:约8.06千字
文档摘要

吉林省扶余市中考数学真题分类(勾股定理)汇编重点解析

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题14分)

一、单选题(7小题,每小题2分,共计14分)

1、如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()

A. B. C. D.

2、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为

A.9 B.6 C.4 D.3

3、如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为(?????)

A. B.

C. D.

4、如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=6,BF=4,△ADG的面积为8,则点F到BC的距离为()

A. B. C. D.

5、如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是(???????)

A.厘米 B.10厘米 C.厘米 D.8厘米

6、《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈=10尺,1尺=10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()

A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12

C.x2+1002=(x+68)2 D.x2+(x+68)2=1002

7、若a,b为直角三角形的两直角边,c为斜边,下列选项中不能用来证明勾股定理的是(???????)

A. B.

C. D.

第Ⅱ卷(非选择题86分)

二、填空题(8小题,每小题2分,共计16分)

1、(2011贵州安顺,16,4分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.

2、《九章算术》是我国古代数学名著,书中有下列问题:“今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地,问木长几何?”其意思为:今有墙高1丈,倚木杆于墙,使木之上端与墙平齐,牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.问木杆是多长?(1丈=10尺)设木杆长为x尺根据题意,可列方程为______.

3、如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.

4、如图,在中,,于点D.E为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点落在CD的延长线上.若,,则的面积为__________.

5、在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树10米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_______米.

6、等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是_______cm.

7、《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B(如图).则芦苇长_____尺.

8、我国古代数学著作《九章算术》中的一个问题:一根竹子高1丈(1丈=10尺),折断后顶端落在离竹子底端3尺处,问折断处离地面的高度为多少尺?如图,设折断处离地面的高度为x尺,根据题意,可列出关于x方程为:__________.

三、解答题(7小题,每小题1