基本信息
文件名称:2024-2025学年度云南省个旧市中考数学真题分类(勾股定理)汇编专项攻克试题(详解).docx
文件大小:559.01 KB
总页数:28 页
更新时间:2025-05-15
总字数:约8.51千字
文档摘要

云南省个旧市中考数学真题分类(勾股定理)汇编专项攻克

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题14分)

一、单选题(7小题,每小题2分,共计14分)

1、如图,在中,,,,为边上一动点,于,于,为中点,则的最小值为(???????).

A. B. C. D.

2、以下列各组数的长为边作三角形,不能构成直角三角形的是(???????)

A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,15

3、《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为尺,则可列方程为(???????)

A. B.

C. D.

4、如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为(???????)

A.20dm B.25dm C.30dm D.35dm

5、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为(???????)

A.6cm2 B.8cm2 C.10cm2 D.12cm2

6、如图,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,连接AE,BD交于点F,则BF的长为(???????)

A. B. C. D.

7、如图,以Rt△ABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S1=8cm2,S2=17cm2,则斜边AB的长是(????????)

A.3cm B.6cm C.4cm D.5cm

第Ⅱ卷(非选择题86分)

二、填空题(8小题,每小题2分,共计16分)

1、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于_________cm2.

2、如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木板加固,则木板的长为________.

3、如图,已知四边形中,,则四边形的面积等于________.

4、在△ABC中,∠C=90°,AB=10,AC=8,则BC的长为_____.

5、如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_______s

6、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米.则旗杆的高度______.

7、《九章算术》是我国古代最重要的数学著作之一,在勾股章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折着高几何?”翻译成数学问题是:如图所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的长,若设AC=x,则可列方程为________________.

8、《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为______.

三、解答题(7小题,每小题10分,共计70分)

1、如图所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.

(1)出发3s后,求PQ的长;

(2)当点Q在边BC上运动时,出发多久后,△PQB能形成等腰三角形?

(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.

2、若的三边,,满足条件,试判断的形状.

3、已知:整式A=(n2﹣1)2+(2