山西省潞城市中考数学真题分类(勾股定理)汇编同步训练
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题14分)
一、单选题(7小题,每小题2分,共计14分)
1、下列四组数中,是勾股数的是()
A.5,12,13 B.4,5,6 C.2,3,4 D.1,,
2、如图,中,,一同学利用直尺和圆规完成如下操作:
①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于的长为半径画弧,两弧交点K,作射线CK;
②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于N,分别以M、N为圆心,以大于的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.
请你观察图形,根据操作结果解答下列问题;过点D作交AB的延长线于点F,若,,则CE的长为(???????)
A.13 B. C. D.
3、如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()
A.13米 B.12米 C.5米 D.米
4、如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段AB=,使点A,B在小正方形的顶点上,设AB与网格线相交所成的锐角为α,则不同角度的α有(????????)
A.1种 B.2种 C.3种 D.4种
5、《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为尺,则可列方程为(???????)
A. B.
C. D.
6、有一个直角三角形的两边长分别为3和4,则第三边的长为()
A.5 B. C. D.5或
7、如图,正方形ABCD中,AB=12,将△ADE沿AE对折至△AEF,延长EF交BC于点G,G刚好是BC边的中点,则ED的长是()
A.2 B.3 C.4 D.5
第Ⅱ卷(非选择题86分)
二、填空题(8小题,每小题2分,共计16分)
1、《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为______.
2、《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B(如图).则芦苇长_____尺.
3、如图,在正方形网格中,点A,B,C,D,E是格点,则∠ABD+∠CBE的度数为_____________.?????
4、《九章算术》是我国古代最重要的数学著作之一,在勾股章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折着高几何?”翻译成数学问题是:如图所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的长,若设AC=x,则可列方程为________________.
5、附加题:观察以下几组勾股数,并寻找规律:
①3,4,5;
②5,12,13;
③7,24,25;
④9,40,41;…
请你写出有以上规律的第⑤组勾股数:________.
6、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A、B、C的面积分别是,,,则正方形D的面积是______.
7、如图,点在正方形的边上,若,,那么正方形的面积为_.
8、图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为_____cm.
三、解答题(7小题,每小题10分,共计70分)
1、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于种种原因,由C到A的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H(A,H,B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)问CH是不