江苏省丹阳市中考数学真题分类(勾股定理)汇编章节测试
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题14分)
一、单选题(7小题,每小题2分,共计14分)
1、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为()
A. B. C. D.
2、如图,长方形中,,,将此长方形折叠,使点与点重合,折痕为,则的长为(???????)
A.12 B.8 C.10 D.13
3、下列四组数中,是勾股数的是()
A.5,12,13 B.4,5,6 C.2,3,4 D.1,,
4、如图,在中,,,,平分交于D点,E,F分别是,上的动点,则的最小值为(???????)
A. B. C.3 D.
5、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开4m后,发现下端刚好接触地面,则旗杆的高为(???)
A.7m B.7.5m C.8m D.9m
6、如图,在中,,,,为边上一动点,于,于,为中点,则的最小值为(???????).
A. B. C. D.
7、已知点是平分线上的一点,且,作于点,点是射线上的一个动点,若,则的最小值为(???????)
A.2 B.3 C.4 D.5
第Ⅱ卷(非选择题86分)
二、填空题(8小题,每小题2分,共计16分)
1、无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.
2、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A、B、C的面积分别是,,,则正方形D的面积是______.
3、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.E为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点B落在CD的延长线上.若AB=10,BC=8,则△ACE的面积为________.
4、图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为_____cm.
5、如图,已知,那么数轴上点所表示的数是________.
6、已知a、b、c是一个三角形的三边长,如果满足,则这个三角形的形状是_______.
7、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了__米.
8、一根直立于水中的芦节(BD)高出水面(AC)2米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=6米,水的深度(AB)为________米
三、解答题(7小题,每小题10分,共计70分)
1、有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它至少几秒能赶回巢中?
2、已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.
3、如图,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,点D为BC的中点,.
(1)求证:△ABC≌△DEB.
(2)连结AE,若BC=4,直接写出AE的长.
4、如图,某海岸线MN的方向为北偏东75°,甲,乙两船分别向海岛C运送物资,甲船从港口A处沿北偏东45°方向航行,乙船从港口B处沿北偏东30°方向航行,已知港口B到海岛C的距离为30海里,求港口A到海岛C的距离.
5、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,,,于A,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求E应建在距A多远处?
6、《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”(注:1步=5尺)
译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉