四川省阆中市中考数学真题分类(勾股定理)汇编同步测试
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题14分)
一、单选题(7小题,每小题2分,共计14分)
1、《九章算术》是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()
A.x2+52=(x+1)2 B.x2+102=(x+1)2
C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)2
2、如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()
A. B. C. D.
3、如图,中,,将折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为(???????).
A. B. C.3 D.
4、一个直角三角形的两条直角边边长分别为6和8,则斜边上的高为(???????)
A.4.5 B.4.6 C.4.8 D.5
5、以下列各组数的长为边作三角形,不能构成直角三角形的是(???????)
A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,15
6、下列各组数据为三角形的三边,能构成直角三角形的是(???????)
A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,5
7、如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()
A. B.3 C.3 D.3
第Ⅱ卷(非选择题86分)
二、填空题(8小题,每小题2分,共计16分)
1、《九章算术》是我国古代最重要的数学著作之一,在勾股章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折着高几何?”翻译成数学问题是:如图所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的长,若设AC=x,则可列方程为________________.
2、如图,在一次综合实践活动中,小明将一张边长为10cm的正方形纸片ABCD,沿着BC边上一点E与点A的连线折叠,点B是点B的对应点,延长EB交DC于点G,BG=cm,则△ECG的面积为_____cm2.
3、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_______尺.?
4、如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.
5、如图,已知,那么数轴上点所表示的数是________.
6、如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为___________长.
7、某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子A到左墙的距离AE为0.7m,梯子顶端D到地面的是样子离DE为2.4m,若梯子底端A保持不动,将梯子斜塞在右墙BC上,梯子顶端C到地面的距离CB为1.5m,则这两面直立墙壁之间的安全道的宽BE为__________m.
8、如图,在四边形中,,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.
三、解答题(7小题,每小题10分,共计70分)
1、湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得米,米.
求:(1)两棵景观树之间的距离;
(2)点B到直线AC的距离.
2、一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米.
(1)这个梯子的顶端距地面有多高?
(2)如果