河北省沙河市中考数学真题分类(勾股定理)汇编专项训练
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题14分)
一、单选题(7小题,每小题2分,共计14分)
1、《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为尺,则可列方程为(???????)
A. B.
C. D.
2、如图,以Rt△ABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S1=8cm2,S2=17cm2,则斜边AB的长是(????????)
A.3cm B.6cm C.4cm D.5cm
3、如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是(???????)
A. B. C. D.
4、勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出(???????)
A.直角三角形的面积
B.最大正方形的面积
C.较小两个正方形重叠部分的面积
D.最大正方形与直角三角形的面积和
5、在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是(???????)
A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°
B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形
C.如果,那么△ABC是直角三角形
D.如果,那么△ABC是直角三角形
6、如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是(???????)
A.6 B.8 C.9 D.15
7、在△ABC中,,那么△ABC是(?????)
A.等腰三角形 B.钝角三角形 C.直角三角形 D.等腰直角三角形
第Ⅱ卷(非选择题86分)
二、填空题(8小题,每小题2分,共计16分)
1、如图,台阶A处的蚂蚁要爬到B处搬运食物,它爬的最短距离是_____.
2、如图1,邻边长为2和6的矩形分割成①,②,③,④四块后,拼接成如图2不重叠、无缝隙的正方形,则图2中的值为___________,图1中的长为_______.
3、如图,在矩形中,,垂足为点.若,,则的长为______.
4、如图所示,在四边形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,则∠ACB的度数等于_____.
5、如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为___________海里(结果保留根号).
6、如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则△ADC的周长是__________???
7、如图,在四边形ABCD中,,,,,,那么四边形ABCD的面积是___________.
8、在△ABC中,AD是BC边上的中线,AD⊥AB,如果AC=5,AD=2,那么AB的长是________.
三、解答题(7小题,每小题10分,共计70分)
1、拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.
(1)学校C会受噪声影响吗?为什么?
(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?
2、如图,将一个长方形纸片ABCD沿对角线AC折叠,点B落在点E处,AE交DC于点F,已知AB=4,BC=2,求折叠后重合部分的面积.
3、如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且,连接DE,DF.
(1)求证:;
(2)连接EF,取EF中点G,连接DG并延长交BC于H,连接BG.
①依题意,补全图形;
②求证:;
③若,用