沪科版9年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为()
A. B.
C. D.
2、下列事件中,是必然事件的是()
A.刚到车站,恰好有车进站
B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球
C.打开九年级上册数学教材,恰好是概率初步的内容
D.任意画一个三角形,其外角和是360°
3、下列事件是随机事件的是()
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
4、下列图形中,既是中心对称图形又是抽对称图形的是()
A. B. C. D.
5、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是()
A.2cm B.2.4cm C.3cm D.3.5cm
6、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为()
A. B. C. D.
7、若的圆心角所对的弧长是,则此弧所在圆的半径为()
A.1 B.2 C.3 D.4
8、已知菱形ABCD的对角线交于原点O,点A的坐标为,点B的坐标为,则点D的坐标是()
A. B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图,在⊙O中,∠BOC=80°,则∠A=___________°.
2、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.
3、如图,已知⊙O的半径为2,弦AB的长度为2,点C是⊙O上一动点若△ABC为等腰三角形,则BC2为_______.
4、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:
种子个数
100
200
300
400
500
600
700
800
900
1000
…
发芽种子个数
94
188
281
349
435
531
625
719
812
902
…
发芽种子频率
(结果保留两位小数)
0.94
0.94
0.94
0.87
0.87
0.89
0.89
0.90
0.90
0.90
…
根据频率的稳定性,估计这种植物种子不发芽的概率是______.
5、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)
6、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.
7、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.
三、解答题(7小题,每小题0分,共计0分)
1、在直角坐标平面内,三个顶点的坐标分别为、、(正方形网格中每个小正方形的边长是一个单位长度).
(1)将向下平移4个单位长度得到的,则点的坐标是____________;
(2)以点B为位似中心,在网格上画出,使与位似,且位似比为2:1,求点的坐标;
(3)若是外接圆,求的半径.
2、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和.若旋转后M、N两点重合成一点C(即构成),设.
(1)的周长为_______;
(2)若,求x的值.
3、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.
(1)图1中的“弦图”的四个直角三角形组成的图形是对称图形(填“轴”或“中心”).
(2)请将“弦图”中的四个直角三角