沪科版9年级下册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为()
A.10 B.12 C.15 D.18
2、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为()
A.64° B.52° C.42° D.36°
3、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()
A.2个 B.3个 C.4个 D.5个
4、下列图形中,可以看作是中心对称图形的是()
A. B.
C. D.
5、“2022年春节期间,中山市会下雨”这一事件为()
A.必然事件 B.不可能事件 C.确定事件 D.随机事件
6、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为()
A. B. C.3 D.
7、如图,是△ABC的外接圆,已知,则的大小为()
A.55° B.60° C.65° D.75°
8、下面四个立体图形中,从正面看是三角形的是()
A. B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数n
1000
1500
2500
4000
8000
15000
20000
30000
成活的棵数m
865
1356
2220
3500
7056
13170
17580
26430
成活的频率
0.865
0.904
0.888
0.875
0.882
0.878
0.879
0.881
估计该种幼树在此条件下移植成活的概率为_______.
2、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.
3、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.
4、在Rt△ABC中,∠ACB=90°,AC=AB,点E、F分别是边CA、CB的中点,已知点P在线段EF上,联结AP,将线段AP绕点P逆时针旋转90°得到线段DP,如果点P、D、C在同一直线上,那么tan∠CAP=_______.
5、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.
6、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.
7、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.
三、解答题(7小题,每小题0分,共计0分)
1、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.
(1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;
(2)把图③补成只是中心对称图形,并把中心标上字母P.
2、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.
(1)求证:AD∥EC;
(2)若AD=6,求线段AE的长.
3、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)
(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;
(2)画出以点为中心,旋转180°后的,并求的面积.
4、在△ABC与△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.
(1)如图1,若点D与A重合,AC与EF交于P,且∠CAE=30°,CE,求E