华东师大版7年级下册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、若,则下列式子一定成立的是()
A. B. C. D.
2、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有()
A.2个 B.3个 C.4个 D.5个
3、在解方程时,去分母正确的是()
A. B.
C. D.
4、如图,于点,于点,于点,下列关于高的说法错误的是()
A.在中,是边上的高 B.在中,是边上的高
C.在中,是边上的高 D.在中,是边上的高
5、第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是参选的冬奥会会徽设计的部分图形,其中是轴对称图形的是()
A. B. C. D.
6、下列不等式中,属于一元一次不等式的是()
A.4>1 B.3x-24<4
C.<2 D.4x-3<2y-7
7、下列车标是中心对称图形的是()
A. B.
C. D.
8、“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.数学上的“九宫图”所体现的是一个3×3表格,每一行的三个数、每列的三个数、斜对角的三个数之和都相等,也称为三阶幻方,如图是一个满足条件的三阶幻方的一部分,则图中字母m表示的数是()
A.6 B.7 C.9 D.11
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图,用同样大小的黑色棋子按如图所示的规律摆放:
第1个图中有6枚棋子,第2个图中有9枚棋子,第3个图中有12枚棋子,第4个图有15枚棋子,…,若第n个图中有2022枚棋子,则n的值是______.
2、某测试共有20道题,每答对一道得5分,每答错一道题扣1分,若小明得分要超过90分,设小明答对x道题,可列不等式_____.
3、在2、﹣2、0中,x=_______是方程2x4+x2=﹣18x的解.
4、如果a>b,那么﹣2a___﹣2b.(填“>”或“<”)
5、把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现____________,从而求得方程组的解,这种解方程组的方法叫做____________,简称代入法.
6、如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?
解:设产品重x吨,原料重y吨.
由题意可列方程组
解这个方程组,得___________
因为毛利润-销售款-原料费-运输费
所以这批产品的销售款比原料费与运输的和多___________元.
7、如图,三角形纸片中,点、、分别在边、、上,.将这张纸片沿直线翻折,点与点重合.若比大,则__________.
三、解答题(7小题,每小题10分,共计70分)
1、解方程:.
2、如图,点O为直线AB上一点,过点О作射线OC,使得,将一个有一个角为30°直角三角板的直角顶点放在点O处,使边ON在射线OA上,另一边OM在直线AB的下方,将图中的三角板绕点О按顺时针方向旋转180°.
(1)三角板旋转的过程中,当时,三角板旋转的角度为;
(2)当ON所在的射线恰好平分时,三角板旋转的角度为;
(3)在旋转的过程中,与的数量关系为;(请写出所有可能情况)
(4)若三角板绕点О按每秒钟20°的速度顺时针旋转,同时射线OC绕点О按每秒钟5°的速度沿顺时针方向,向终边OB运动,当ON与射线OB重合时,同时停止运动,直接写出三角板的直角边所在射线恰好平分时,三角板运动时间为.
3、如图,在正方形网格纸中,每个小正方形的边长均为1,的三个顶点都在格点上.
(1)画出关于轴对称的;
(2)点为轴上一动点,当取得最小值时,点的坐标为________