基本信息
文件名称:2025年沪科版9年级下册期末测试卷(典优)附答案详解.docx
文件大小:843.74 KB
总页数:33 页
更新时间:2025-05-16
总字数:约9.42千字
文档摘要

沪科版9年级下册期末测试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是()

A. B. C. D.

2、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是()

A.个 B.个 C.个 D.个

3、已知菱形ABCD的对角线交于原点O,点A的坐标为,点B的坐标为,则点D的坐标是()

A. B. C. D.

4、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是()

A. B. C. D.

5、下列图形中,可以看作是中心对称图形的是()

A. B.

C. D.

6、如图,AB是的直径,CD是的弦,且,,,则图中阴影部分的面积为()

A. B. C. D.

7、下列图形中,既是中心对称图形又是抽对称图形的是()

A. B. C. D.

8、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于()

A. B. C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.

2、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.

3、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.

4、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.

(1)点M的纵坐标为______;

(2)当最大时,点P的坐标为______.

5、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.

6、到点的距离等于8厘米的点的轨迹是__.

7、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)

①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.

三、解答题(7小题,每小题0分,共计0分)

1、一个几何体的三个视图如图所示(单位:cm).

(1)写出这个几何体的名称:;

(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.

2、如图,AB是的直径,CD是的一条弦,且于点E.

(1)求证:;

(2)若,,求的半径.

3、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:

(1)这次活动共调查了______人,并补充完整条形统计图;

(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;

(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.

4、如图1,在平面直角坐标系中,二次函数的图象经过点,过点A作轴,做直线AC平行x轴,点D是二次函数的图象与x轴的一个公共点(点D与点O不重合).

(1)求点D的横坐标(用含b的代数式表示)

(2)求的最大值及取得最大值时的二次函数表达式.

(3)在(2)的条件下,如图2,P为OC的中点,在直线AC上取一点M,连接PM,做点C关于PM的对称点N,①连接AN,求AN的最小值.

②当点N落在抛物线的对称轴上,求直线MN的函数表达式.

5、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE)