沪科版9年级下册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、下列图形中,可以看作是中心对称图形的是()
A. B.
C. D.
2、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是()
A.1 B. C. D.
3、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是()
A..等腰三角形 B.等边三角形
C..直角三角形 D..等腰直角三角形
4、下列事件中,是必然事件的是()
A.实心铁球投入水中会沉入水底
B.车辆随机到达一个路口,遇到红灯
C.打开电视,正在播放《大国工匠》
D.抛掷一枚硬币,正面向上
5、平面直角坐标系中点关于原点对称的点的坐标是()
A. B. C. D.
6、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()
A. B. C. D.
7、在平面直角坐标系中,已知点与点关于原点对称,则的值为()
A.4 B.-4 C.-2 D.2
8、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是()
A. B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70o,那么∠C的度数为_______.
2、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为_____.
3、点(2,-3)关于原点的对称点的坐标为_____.
4、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
5、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.
6、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.
7、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.
三、解答题(7小题,每小题0分,共计0分)
1、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.
(1)图1中的“弦图”的四个直角三角形组成的图形是对称图形(填“轴”或“中心”).
(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:
①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;
②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.
2、一个几何体的三个视图如图所示(单位:cm).
(1)写出这个几何体的名称:;
(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.
3、如图,的直径cm,AM和BN是它的切线,DE与相切于点E,并与AM,BN分别相交于D,C两点.设,,求y关于x的函数解析式.
4、在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.
实验种植数(粒)
1
5
50
100
200
500
1000
2000
3000
发芽频数
0
4
45
92
188
476
951
1900
2850
(1)估计该麦种的发芽概率.
(2)如果播种该种小麦每公顷所需麦苗数为4000000棵,种子发芽后的成秧率为80%,该麦种的千粒质量为50g.那么播种3公顷该种小麦,估计约需麦种多少千克(精确到1kg)?
5、如图,在中,,以AC为直径的半圆交斜边AB于点D,E为BC的中点,连结DE,CD.过点D作于点F.
(1)求证