基本信息
文件名称:基础强化沪科版9年级下册期末试题含答案详解【培优B卷】.docx
文件大小:842.77 KB
总页数:30 页
更新时间:2025-05-16
总字数:约8.94千字
文档摘要

沪科版9年级下册期末试题

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、下列关于随机事件的概率描述正确的是()

A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”

B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖

C.随机事件发生的概率大于或等于0,小于或等于1

D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率

2、如图,AB,CD是⊙O的弦,且,若,则的度数为()

A.30° B.40° C.45° D.60°

3、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为()

A.64° B.52° C.42° D.36°

4、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是()

A.1 B. C. D.

5、下列图形中,既是轴对称图形又是中心对称图形的是()

A. B. C. D.

6、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是()

A. B. C. D.

7、如图,A,B,C是正方形网格中的三个格点,则是()

A.优弧 B.劣弧 C.半圆 D.无法判断

8、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是()

A. B. C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.

2、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.

3、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)

4、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.

5、AB是的直径,点C在上,,点P在线段OB上运动.设,则x的取值范围是________.

6、在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有________个.

7、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.

三、解答题(7小题,每小题0分,共计0分)

1、如图,点A是外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)

2、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.

(1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;

(2)把图③补成只是中心对称图形,并把中心标上字母P.

3、已知线段AB,用平移、旋转、轴对称画出一个以AB为一边,一个内角是30°的菱形.(不写画法,保留作图痕迹).

4、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)

①2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);

②1个宣传类岗位:垃圾分类知识宣传(用表示).

(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率