基本信息
文件名称:强化训练沪科版9年级下册期末试卷及完整答案详解1套.docx
文件大小:1.12 MB
总页数:40 页
更新时间:2025-05-16
总字数:约1.13万字
文档摘要

沪科版9年级下册期末试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是()

A. B. C.5 D.5

2、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是()

A.60 B.90 C.120 D.180

3、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为()

A. B. C. D.8

4、平面直角坐标系中点关于原点对称的点的坐标是()

A. B. C. D.

5、下面的图形中既是轴对称图形又是中心对称图形的是()

A. B. C. D.

6、下列事件是确定事件的是()

A.方程有实数根 B.买一张体育彩票中大奖

C.抛掷一枚硬币正面朝上 D.上海明天下雨

7、下列语句判断正确的是()

A.等边三角形是轴对称图形,但不是中心对称图形

B.等边三角形既是轴对称图形,又是中心对称图形

C.等边三角形是中心对称图形,但不是轴对称图形

D.等边三角形既不是轴对称图形,也不是中心对称图形

8、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为()

A.8 B. C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.

2、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.

3、某射击运动员在同一条件下的射击成绩记录如下:

射击次数

20

40

100

200

400

1000

“射中9环以上”的次数

15

33

78

158

321

801

“射中9环以下”的频率

通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).

4、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.

5、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.

6、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.

7、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.

三、解答题(7小题,每小题0分,共计0分)

1、如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.

(1)求证:

①BC是⊙O的切线;

②;

(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.

2、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接.

(1)如图1,当、、三点共线时,连接,若,求的长;

(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;

(3)如图3,在(2)的条件下,连接、交于点.若,请直接写出的值.

3、在△ABC与△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.

(1)如图1,若点D与A重合,AC与EF交于P,且∠CAE=30°,CE,求EP的长;

(2)如图2,若点D与C重合,EF与BC交于点M,且BM=CM,连接AE,且∠CAE=∠MCE,求证:AE+MF=CE;

(3)如图3,若点D与A重合,连接BE,且∠ABE∠ABC,连接BF,CE,