基本信息
文件名称:难点解析-沪科版9年级下册期末试卷含答案详解【名师推荐】.docx
文件大小:1.03 MB
总页数:30 页
更新时间:2025-05-16
总字数:约8.91千字
文档摘要

沪科版9年级下册期末试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为()

A.1 B.2 C.3 D.4

2、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为()

A.140° B.100° C.80° D.40°

3、下列四个图案中,是中心对称图形但不是轴对称图形的是()

A. B. C. D.

4、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积()

A.不变 B.面积扩大为原来的3倍

C.面积扩大为原来的9倍 D.面积缩小为原来的

5、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是()

A.2cm B.2.4cm C.3cm D.3.5cm

6、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是()

A. B.四边形EFGH是菱形

C. D.

7、已知菱形ABCD的对角线交于原点O,点A的坐标为,点B的坐标为,则点D的坐标是()

A. B. C. D.

8、下面的图形中既是轴对称图形又是中心对称图形的是()

A. B. C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.

2、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)

3、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为_____.

4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.

5、点(2,-3)关于原点的对称点的坐标为_____.

6、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).

7、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.

三、解答题(7小题,每小题0分,共计0分)

1、小明每天骑自行车.上学,都要通过安装有红、绿灯的4个十字路口.假设每个路口红灯和绿灯亮的时间相同.

(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)

(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为.(请直接写出答案)

2、如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.

3、在平面直角坐标系中,⊙O的半径为1,对于直线l和线段AB,给出如下定义:若将线段AB关于直线l对称,可以得到⊙O的弦A′B′(A′,B′分别为A,B的对应点),则称线段AB是⊙O的关于直线l对称的“关联线段”.例如:在图1中,线段是⊙O的关于直线l对称的“关联线段”.

(1)如图2,的横、纵坐标都是整数.

①在线段中,⊙O的关于直线y=x+2对称的“关联线段”是_______;

②若线段中,存在⊙O的关于直线y=-x+m对称的“关联线段”,则=;

(2)已知直线交x轴于点C,在△ABC中,AC=3,AB=1,若线段AB是⊙O的关于直线对称的“关联线段”,直接写出b的最大值和最小值,以及相应的BC长.

4、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联