基本信息
文件名称:解析卷沪科版9年级下册期末测试卷及答案详解【全优】.docx
文件大小:561.31 KB
总页数:31 页
更新时间:2025-05-16
总字数:约9.31千字
文档摘要

沪科版9年级下册期末测试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、下列说法中正确的是()

A.“打开电视,正在播放《新闻联播》”是必然事件

B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖

C.想了解某市城镇居民人均年收入水平,宜采用抽样调查

D.我区未来三天内肯定下雪

2、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为()

A.1 B.2 C. D.

3、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为()

A. B. C. D.8

4、如图,AB,CD是⊙O的弦,且,若,则的度数为()

A.30° B.40° C.45° D.60°

5、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()

A.2个 B.3个 C.4个 D.5个

6、平面直角坐标系中点关于原点对称的点的坐标是()

A. B. C. D.

7、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为()

A.140° B.100° C.80° D.40°

8、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为()

A. B. C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.

2、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.

3、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.

4、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.

(1)点M的纵坐标为______;

(2)当最大时,点P的坐标为______.

5、如果点与点B关于原点对称,那么点B的坐标是______.

6、如图,AB为的弦,半径于点C.若,,则的半径长为______.

7、在平面直角坐标系中,点关于原点对称的点的坐标是______.

三、解答题(7小题,每小题0分,共计0分)

1、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.

2、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)

①2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);

②1个宣传类岗位:垃圾分类知识宣传(用表示).

(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为________.

(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率.

3、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.

(1)如图,当点E在线段CD上时,

①依题意补全图形,并直接写出BC与CF的位置关系;

②求证:点G为BF的中点.

(2)直接写出AE,BE,AG之间的数量关系.

4、如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.

5、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.

(1)求证:AD是⊙O的切线;

(2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.

6、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.

已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.

(1)求弦AC的长.

(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.