华东师大版7年级下册期末试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、已知,则下列各式中,不一定成立的是()
A. B. C. D.
2、如图,点,为线段上两点,,且,设,则关于的方程的解是()
A. B. C. D.
3、如图是某月的月历,用一个方框任意框出4个数a,b,c,d.若2a+d-b+c的值为68,那么a的值为()
A.13 B.18 C.20 D.22
4、在①;②;③;④;⑤中,属于不等式的有
A.个 B.个 C.个 D.个
5、第24届冬季奥林匹克运动会将于2022年2月在北京和张家界举行,下列四个图案分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()
A. B. C. D.
6、几个同学打算合买一副球拍,每人出7元,则还少4元;每人出8元,就多出3元.他们一共有()个人.A.6 B.7 C.8 D.9
7、下列说法中,一定正确的是()
A.若,则 B.若,则
C.若,则 D.若,则
8、下列车标是中心对称图形的是()
A. B.
C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、解二元一次方程组有___________和___________.
用一元一次方程解应用题的步骤是什么?
审题、___________、列方程、___________、检验并答.
2、已知点、在数轴上,点表示的数为-5,点表示的数为15.动点从点出发,以每秒3个单位长度的速度沿数轴正方向匀速移动,则点移动__________秒后,.
3、如图,三角形纸片中,点、、分别在边、、上,.将这张纸片沿直线翻折,点与点重合.若比大,则__________.
4、二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化成____________方程了,于是可以求出其中的一个未知数,然后再求另一个未知数.这种将未知数的个数由多转化少、逐一解决的想法,叫做____________思想.
5、数轴上点A表示的数是1,点B表示的数是﹣3,原点为O,若点A和点B分别以每秒2个单位长度的速度和每秒5个单位长度的速度同时向右运动,要使OB=2OA,要经过______秒.
6、某校组织师生去参观一大型工程建筑,如果租用60座的甲种客车若干辆,刚好坐满;如果租用80座的乙种客车可少租1辆,且余40个空座位,设该校师生人,则可以列方程__.
7、若关于x的方程的解是正整数,则符合条件的所有整数a的和为______.
三、解答题(7小题,每小题10分,共计70分)
1、在数学课上,老师展示了下列问题,请同学们分组讨论解决的方法.
中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有这样一个问题:“今有三人共车,二车空;二人共车,九人步,问人和车各几何?”这个题的意思是:今有若干人乘车.若每3人乘一辆车,则余2辆空车;若每2人乘一辆车.则余9人需步行,问共有多少辆车,多少人?
某小组选择用一元一次方程解决问题,请补全他们的分析过程:
第一步,设共有x辆车;
第二步,由“若每3人乘一辆车,则余2辆空车”,可得人数为(用含x的式子表示);
第三步,由“若每2人乘一辆车,则余9人需步行”.可得人数为(用含x的式子表示);
第四步,根据两种乘车方式的人数相等,列出方程为.
2、解方程:.
3、在数轴上,点A,B分别表示数a,b,且,记.
(1)求AB的值;
(2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
①请用含t的式子分别写出点P、点Q、点C所表示的数;
②当t的值是多少时,点C到点P,Q的距离相等?
4、阅读下面材料并回答问题:点、在数轴上分别表示数、,、两点之间的距离表示为.当、两点中有一点在原点时,不妨设在原点,如图①,;当、两点都不在原点时,
(1)如图②,点、都在原点的右边,;
(2)如图③,点、都在原点左边,;
(3)如