基本信息
文件名称:2024-2025学年度沪科版9年级下册期末试卷【夺分金卷】附答案详解.docx
文件大小:679.77 KB
总页数:29 页
更新时间:2025-05-16
总字数:约7.83千字
文档摘要

沪科版9年级下册期末试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积()

A.不变 B.面积扩大为原来的3倍

C.面积扩大为原来的9倍 D.面积缩小为原来的

2、下列事件为必然事件的是()

A.明天要下雨

B.a是实数,|a|≥0

C.﹣3<﹣4

D.打开电视机,正在播放新闻

3、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()

A.36cm B.27cm C.24cm D.15cm

4、若的圆心角所对的弧长是,则此弧所在圆的半径为()

A.1 B.2 C.3 D.4

5、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为()

A. B. C.3 D.

6、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是()

A.2cm B.2.4cm C.3cm D.3.5cm

7、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是()

A.个 B.个 C.个 D.个

8、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()

A. B. C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为_____.

2、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

3、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.

4、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.

5、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.

6、有五张正面分别标有数字,,0,1,2的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,将该卡片放回洗匀后从中再任取一张,将该卡片上的数字记为,则为非负数的概率为________.

7、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为_____.

三、解答题(7小题,每小题0分,共计0分)

1、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.

(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;

(2)求线段AB在旋转过程中扫过的面积.

2、如图,在中,AB是直径,弦EF∥AB.

(1)请仅用无刻度的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)

(2)在(1)的条件下,连接OP交EF于点Q,,,求PQ的长度.

3、某商家销售一批盲盒,每一个看上去无差别的盲盒内含有A,B,C,D四种玩具中的一种,抽到玩具B的有关统计量如表所示:

抽盲盒总数

500

1000

1500

2000

2500

3000

频数

130

273

414

566

695

843

频率

0.260

0.273

0.276

0.283

0.278

0.281

(1)估计从这批盲盒中任意抽取一个是玩具B的概率是;(结果保留小数点后两位)

(2)小明从分别装有A,B,C,D四种玩具的四个盲盒中随机抽取两个,请利用画树状图或列表的方法,求抽到的两个玩具恰为玩具A和玩具C的概率.

4、下面是“过圆外一点作圆的切线”的尺规作图过程.

已知:⊙O和⊙O外一点P.

求作:过点P的⊙O的切线.作法:如图,

(1)连接OP;

(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;

(3)作直线MN,交OP于点C;

(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;

(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线

完成如下证明:

证明:连接OA,OB,

∵OP是⊙C直径,点A在⊙C上

∴∠OAP=90°(___________)(