沪科版9年级下册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为()
A. B. C. D.
2、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()
A.1cm B.2cm C.2cm D.4cm
3、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是()
A.2cm B.2.4cm C.3cm D.3.5cm
4、如图,该几何体的左视图是()
A. B. C. D.
5、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()
A. B. C. D.
6、下列事件中,是必然事件的是()
A.实心铁球投入水中会沉入水底
B.车辆随机到达一个路口,遇到红灯
C.打开电视,正在播放《大国工匠》
D.抛掷一枚硬币,正面向上
7、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()
A. B. C. D.
8、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()
A.AM=BM B.CM=DM C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.
2、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为_____.
3、已知中,,,,以为圆心,长度为半径画圆,则直线与的位置关系是__________.
4、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
5、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.
6、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.
7、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.
三、解答题(7小题,每小题0分,共计0分)
1、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.
(1)求∠ABD的度数;
(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;
(3)在(2)的条件下,求的长.
2、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.
3、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.
4、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.
(1)求弦AC的长.
(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
(3)当OE=1时,求点A与点D之间的距离(直接写出答案).
5、如图,已知弓形的长,弓高,(,并经过圆心O).
(1)请利用尺规作图的方法找到圆心O;
(2)求弓形所在的半径的长.
6、如图,等腰直角三角形,,,延长至E,使得,以为直角边作,,.
(1)若以每秒1个单位的速度沿向右运动,当点E到达点C时停止运动,直接写出在运动过程中与重叠部分面积S与运动时间t(单位:秒)的函数关系式;
(2)点M为线段的中点,当(1)中的顶点E运动到点C后,将绕着点C继续顺时针旋转得到,点P是直线上一动点,连接,求的最小值.
7、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.
(1)请把图①、图②补成既是轴对称图形,