华东师大版7年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、一个多边形的每个内角均为150°,则这个多边形是()
A.九边形 B.十边形 C.十一边形 D.十二边形
2、如图给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,这三个数的和不可能是()
A.69 B.54 C.27 D.40
3、不等式组有两个整数解,则的取值范围为()
A. B. C. D.
4、如图,于点,于点,于点,下列关于高的说法错误的是()
A.在中,是边上的高 B.在中,是边上的高
C.在中,是边上的高 D.在中,是边上的高
5、下列方程中,解为的方程是()
A. B. C. D.
6、如图,点,为线段上两点,,且,设,则关于的方程的解是()
A. B. C. D.
7、第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是参选的冬奥会会徽设计的部分图形,其中是轴对称图形的是()
A. B. C. D.
8、在①;②;③;④;⑤中,属于不等式的有
A.个 B.个 C.个 D.个
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图,为一长条形纸带,,将沿折叠,C、D两点分别、对应,若,则的度数为_________.
2、某校六年级两个班共有78人,若从一班调3人到二班,那么两班人数正好相等.一班原有人数是__人.
3、据统计资料,甲、乙两种作物的单位面积产量的比是1∶2.现要把一块长200m、宽100m的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物的总产量的比是3∶4?
解:甲、乙两种作物的种植区域分别为长方形AEFD和BCFE.
设AE=xm,BE=ym,
根据问题中涉及长度、产量的数量关系,
列方程组:
解得:___________
4、《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作.其中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:有若干人共同购买某种物品,如果每人出8钱,则多3钱;如果每人出7钱,则少4钱,问共有多少人?物品的价格是多少钱?用一元一次方程的知识解答上述问题设共有x人,依题意,可列方程为______.
5、如果a>b,那么﹣2a___﹣2b.(填“>”或“<”)
6、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.
7、2x-y=3用含x的式子表示y,得____________;用含y的式子表示x,得____________.
三、解答题(7小题,每小题10分,共计70分)
1、对于点M,N,给出如下定义:在直线MN上,若存在点P,使得,则称点P是“点M到点N的k倍分点”.
例如:如图,点Q1,Q2,Q3在同一条直线上,Q1Q2=3,Q2Q3=6,则点Q1是点Q2到点Q3的倍分点,点Q1是点Q3到点Q2的3倍分点.
已知:在数轴上,点A,B,C分别表示-4,-2,2.
(1)点B是点A到点C的______倍分点,点C是点B到点A的______倍分点;
(2)点B到点C的3倍分点表示的数是______;
(3)点D表示的数是x,线段BC上存在点A到点D的2倍分点,写出x的取值范围.
2、已知数轴上三点,,对应的数分别为,0,3,点为数轴上任意一点,其对应的数为.
(1)点到点的距离为;
(2)如果点到点、点的距离相等,那么的值是;
(3)数轴上是否存在点,使点到点的距离是点到点的距离的3倍?若存在,请你求出的值;若不存在,请说明理由.
3、解方程:.
4、完成下面推理填空:如图,已知:于D,于G,.求证:AD平分.
解:∵于D,(已知),
∴(____①_____),
∴(同位角相等,两直线平行),
∴_____②___(两直线平行,同位角相等)
∠1=∠2(____③_____),
又∵(已知),
∴∠2=∠3(_____④______),
∴AD平分(角平分线的定义).
5、渔场计划购买甲、