华东师大版7年级下册期末试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()
A.50° B.65° C.75° D.80°
2、下列说法正确的是()
A.若,则 B.若,则
C.是七次三项式 D.当时,
3、下列不等式中,是一元一次不等式的是()
A. B. C. D.
4、如图给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,这三个数的和不可能是()
A.69 B.54 C.27 D.40
5、如图,()
A.180° B.360° C.270° D.300°
6、如果,那么下列等式不一定成立的是()
A. B. C. D.
7、第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是参选的冬奥会会徽设计的部分图形,其中是轴对称图形的是()
A. B. C. D.
8、如图,三角形中,,.将绕点B逆时针旋转得到,使点C的对应点恰好落在边上,则的度数是()
A. B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、若是二元一次方程的解,则______.
2、不等式的性质:
不等式的两边都加上(或减去)同一个数(或式子),不等号的方向______.
不等式两边乘(或除以)同一个正数,不等号的方向______.
不等式两边乘(或除以)同一个负数,不等号的方向______.
3、我们把几个一元一次不等式解集的__________,叫作由它们所组成的一元一次不等式组的解集.
4、《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作.其中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:有若干人共同购买某种物品,如果每人出8钱,则多3钱;如果每人出7钱,则少4钱,问共有多少人?物品的价格是多少钱?用一元一次方程的知识解答上述问题设共有x人,依题意,可列方程为______.
5、“x的与4的差是负数”用不等式表示:_____.
6、不等式的解集是__.
7、加减消元法:当二元一次方程的两个方程中,同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,从而求得方程组的解,这种解方程组的方法叫做_______,简称_______.
加减消元法的条件:同一未知数的系数_______或_______.
三、解答题(7小题,每小题10分,共计70分)
1、如图,在正方形网格纸中,每个小正方形的边长均为1,的三个顶点都在格点上.
(1)画出关于轴对称的;
(2)点为轴上一动点,当取得最小值时,点的坐标为________.
2、解方程:=﹣6.
3、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长(单位长度),慢车长(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且与互为相反数.
(1)求此时刻快车头A与慢车头C之间相距多少单位长度?
(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A和C相距8个单位长度.
(3)此时在快车AB上有一位爱动脑筋的六年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A,C的距离和加上到两列火车尾B,D的距离和是一个不变的值(即为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.
4、对于数轴上给定两点M、N以及一条线段PQ,给出如下定义:若线段MN的中点R在线段PQ上(点R能与点P或Q重合),则称点M与点N关于线段PQ“中位对称”.如图为点M与点N关于线段PQ“中位对称”的示意图.
已知:点O为数轴的原点,点A表示的数为﹣1,点B表示的数为2
(1)若点C、D、E表示的数分别为﹣3,1.5,4,则在C、D、E三点中,与点A关于线段OB“中位对称”;点F表示的数为t,若点