沪科版9年级下册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是()
A. B. C.5 D.5
2、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为()
A.25° B.80° C.130° D.100°
3、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的()
A.①②③ B.①②④ C.①③④ D.②③④
4、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()
A.1cm B.2cm C.2cm D.4cm
5、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为()
A.3 B.4 C.5 D.6
6、如图,几何体的左视图是()
A. B. C. D.
7、如图,AB,CD是⊙O的弦,且,若,则的度数为()
A.30° B.40° C.45° D.60°
8、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是()
A. B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
2、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)
3、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.
4、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.
5、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)
6、从﹣2,1两个数中随机选取一个数记为m,再从﹣1,0,2三个数中随机选取一个数记为n,则m、n的取值使得一元二次方程x2﹣mx+n=0有两个不相等的实数根的概率是_____.
7、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.
三、解答题(7小题,每小题0分,共计0分)
1、如图1,在中,,,点D为AB边上一点.
(1)若,则______;
(2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;
(3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF.直接写出BF的最小值.
2、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,?ABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.
3、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).
(1)直接写出点B关于原点对称的点B′的坐标:;
(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
4、在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.
实验种植数(粒)
1
5
50
100
200
500
1000
2000
3000
发芽频数
0
4
45
92
188
476
951
1900
2850
(1)估计该麦种的发芽概率.
(2)如果播种该种小麦每公顷所需麦苗数为4000000棵,种子发芽后的成秧率为80%,该麦种的千粒质量为50g.那么播种3公顷该种小麦,