基本信息
文件名称:解析卷沪科版9年级下册期末试题(基础题)附答案详解.docx
文件大小:1.07 MB
总页数:34 页
更新时间:2025-05-16
总字数:约9.04千字
文档摘要

沪科版9年级下册期末试题

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是()

A.30° B.36° C.60° D.72°

2、下列四个图案中,是中心对称图形但不是轴对称图形的是()

A. B. C. D.

3、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为()

A.25° B.80° C.130° D.100°

4、如图,点A、B、C在上,,则的度数是()

A.100° B.50° C.40° D.25°

5、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()

A.AM=BM B.CM=DM C. D.

6、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积()

A.不变 B.面积扩大为原来的3倍

C.面积扩大为原来的9倍 D.面积缩小为原来的

7、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是()

A.① B.② C.③ D.①或③

8、如图是由5个相同的小正方体搭成的几何体,它的左视图是().

A. B. C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.

2、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

3、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.

(1)点M的纵坐标为______;

(2)当最大时,点P的坐标为______.

4、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)

5、如图,在中,,,.绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留)

6、平面直角坐标系中,,,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当BK取最小值时,点B的坐标为_________.

7、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是_____.

三、解答题(7小题,每小题0分,共计0分)

1、综合与实践

“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.

使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.

为了说明这一方法的正确性,需要对其进行证明.

独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.

已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.

探究解决:(2)请完成证明过程.

应用实践:(3)若半圆的直径为,,求的长度.

2、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图.

3、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).

(1)直接写出点B关于原点对称的点B′的坐标:;

(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;

(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.

4、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.

(1)依题意补全图形;

(2)求的度数;

(3)连接GA,用等式表示线段GA,GB,GC之间