沪科版9年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()
A.AM=BM B.CM=DM C. D.
2、下表记录了一名球员在罚球线上投篮的结果:
投篮次数
50
100
150
200
250
400
500
800
投中次数
28
63
87
122
148
242
301
480
投中频率
0.560
0.630
0.580
0.610
0.592
0.605
0.602
0.600
根据频率的稳定性,估计这名球员投篮一次投中的概率约是()
A.0.560 B.0.580 C.0.600 D.0.620
3、如图是由5个相同的小正方体搭成的几何体,它的左视图是().
A. B. C. D.
4、下列事件是必然发生的事件是()
A.在地球上,上抛的篮球一定会下落
B.明天的气温一定比今天高
C.中秋节晚上一定能看到月亮
D.某彩票中奖率是1%,买100张彩票一定中奖一张
5、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是()
A.① B.② C.③ D.①或③
6、下列事件为随机事件的是()
A.四个人分成三组,恰有一组有两个人 B.购买一张福利彩票,恰好中奖
C.在一个只装有白球的盒子里摸出了红球 D.掷一次骰子,向上一面的点数小于7
7、图2是由图1经过某一种图形的运动得到的,这种图形的运动是()
A.平移 B.翻折 C.旋转 D.以上三种都不对
8、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为()
A.105° B.120° C.135° D.150°
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.
2、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.
3、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.
4、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.
5、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.
6、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为_____.
7、某射击运动员在同一条件下的射击成绩记录如下:
射击次数
20
40
100
200
400
1000
“射中9环以上”的次数
15
33
78
158
321
801
“射中9环以下”的频率
通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).
三、解答题(7小题,每小题0分,共计0分)
1、小明每天骑自行车.上学,都要通过安装有红、绿灯的4个十字路口.假设每个路口红灯和绿灯亮的时间相同.
(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)
(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为.(请直接写出答案)
2、如图所示,是⊙的一条弦,,垂足为,交⊙于点,点在⊙上.
()若,求的度数.
()若,,求的长.
3、如图1,在平面直角坐标系中,二次函数的图象经过点,过点A作轴,做直线AC平行x轴,点D是二次函数的图象与x轴的一个公共点(点D与点O不重合).
(1)求点D的横坐标(用含b的代数式表示)
(2)求的最大值及取得最大值时的二次函数表达式.
(3)在(2)的条件下,如图2,P为OC的中点,在直线AC上取一点M,连接PM,做点C关于PM