华东师大版7年级下册期末试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、下列四个图形中,是中心对称图形的是()
A. B.
C. D.
2、下列图标中,轴对称图形的是()
A. B. C. D.
3、下列各式中,一元一次方程是()
A.2x=4 B.2﹣=5 C.2x﹣y=6 D.2x﹣y=7
4、若方程组的解满足,则k的值可能为()
A.-1 B.0 C.1 D.2
5、在数轴上表示不等式3x>5的解集,正确的是()
A. B.
C. D.
6、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于()
A.19° B.20° C.24° D.25°
7、若,则下列式子一定成立的是()
A. B. C. D.
8、如果,那么下列等式不一定成立的是()
A. B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、若是二元一次方程的解,则______.
2、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C=90°,AC=BC=10,AB=10,点C关于折痕AD的对应点E恰好落在AB边上,小明在折痕AD上任取一点P,则△PEB周长的最小值是___________.
3、已知是方程2x+ay=7的一个解,那么a=_____.
4、用数轴表示不等式的解集的步骤:
第一步:______;
第二步:______;
第三步:______.
5、一般地,一个含有未知数的不等式的所有的解,组成这个______.
求不等式的解集的过程叫______.
6、一元一次不等式的概念:2x-6>0,3x-24<4+x这些不等式的左右两边都是______,只含有______,并且未知数的最高次数是______,像这样的不等式,叫做一元一次不等式.
7、用不等式表示:与的和是非负数__.
三、解答题(7小题,每小题10分,共计70分)
1、临近春节,将进入年货物流高峰期,某物流公司计划购买A、B两种型号的智能快递车搬运年货,已知A型快递车比B型快递车每小时多搬运20kg年货,且4台A型快递车每小时搬运的年货与5台B型快递车每小时搬运的年货数量相同.
(1)求A、B两种型号的快递车每小时分别搬运多少年货?
(2)该物流公司计划采购A、B两种型号的快递车共10台,其中A型快递车a台,要求每小时搬运的年货不少于920kg,则至少购进A型快递车多少台?
2、【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴发现:如图所示的数轴上,点O为原点,点A、B表示的数分别是a和b,点B在点A的右边(即),则A、B两点之间的距离(即线段的长).
【问题情境】如图所示,数轴上点A表示的数,点B表示的数为,线段的中点C表示的数为x.点M从点A出发,以每秒2个单位长度的速度沿数轴向右运动;同时点N从点B出发,以每秒3个单位的速度沿数轴向左运动.设运动时间为t秒.
【综合运用】根据“背景知识”和“问题情境”解答下列问题:
(1)填空:
①A、B两点之间的距离_______,线段的中点C表示的数_______.
②用含t的代数式表示:t秒后,点M表示的数为________;点N表示的数为______.
(2)求当t为何值时,点M运动到线段的中点C,并求出此时点N所表示的数.
(3)求当t为何值时,.
3、解方程组:
4、在数轴上,点A,B分别表示数a,b,且,记.
(1)求AB的值;
(2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
①请用含t的式子分别写出点P、点Q、点C所表示的数;
②当t的值是多少时,点C到点P,Q的距离相等?
5、已知:∠AOB是直角,过点O作射线OC,设∠AOC=α(0°<α<180°,且α≠90°),将射线OC逆时针旋转45°得到射线OD.
(1)如图1,若0°<α<45°,则∠AOC+∠BOD=°;
(2)如图2,若45°<α<90°.
①请你直接写出∠AOC与