基本信息
文件名称:基础强化沪科版9年级下册期末试卷附参考答案详解【突破训练】.docx
文件大小:946.11 KB
总页数:31 页
更新时间:2025-05-16
总字数:约8.87千字
文档摘要

沪科版9年级下册期末试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()

A.2个 B.3个 C.4个 D.5个

2、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是()

A. B. C. D.

3、如图,A,B,C是正方形网格中的三个格点,则是()

A.优弧 B.劣弧 C.半圆 D.无法判断

4、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于()

A. B. C. D.

5、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()

A. B. C. D.

6、下列说法中正确的是()

A.“打开电视,正在播放《新闻联播》”是必然事件

B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖

C.想了解某市城镇居民人均年收入水平,宜采用抽样调查

D.我区未来三天内肯定下雪

7、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是()

A.30° B.36° C.60° D.72°

8、下列语句判断正确的是()

A.等边三角形是轴对称图形,但不是中心对称图形

B.等边三角形既是轴对称图形,又是中心对称图形

C.等边三角形是中心对称图形,但不是轴对称图形

D.等边三角形既不是轴对称图形,也不是中心对称图形

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.

2、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.

3、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:

(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;

(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.

4、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

5、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.

6、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是______(填写“平行投影”或“中心投影”)

7、一个五边形共有__________条对角线.

三、解答题(7小题,每小题0分,共计0分)

1、某省高考采用“3+1+2”模式:“3”是指语文、数学、英语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在思想政治、化学、生物、地理4科中任选2科.

(1)假定在“1”中选择历史,在“2”中已选择地理,则选择生物的概率是________;

(2)求同时选择物理、化学、生物的概率.

2、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.

(1)王老师被分配到“就餐监督岗”的概率为;

(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.

3、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分.

(1)求证:是切线;

(2)若,,求的半径和的长.

4、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.

已知点,,,.

(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;

(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;

(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值