沪科版9年级下册期末试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、下列事件是随机事件的是()
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
2、如图,几何体的左视图是()
A. B. C. D.
3、如图,该几何体的左视图是()
A. B. C. D.
4、下面的图形中既是轴对称图形又是中心对称图形的是()
A. B. C. D.
5、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是()
A..等腰三角形 B.等边三角形
C..直角三角形 D..等腰直角三角形
6、已知⊙O的半径为4,,则点A在()
A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
7、下列图形中,既是中心对称图形又是抽对称图形的是()
A. B. C. D.
8、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是()
A.60 B.90 C.120 D.180
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、两直角边分别为6、8,那么的内接圆的半径为____________.
2、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
3、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.
4、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有_____(填写所有正确结论的序号).
5、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.
6、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是________.
7、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.
三、解答题(7小题,每小题0分,共计0分)
1、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.
(1)王老师被分配到“就餐监督岗”的概率为;
(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.
2、如图,已知在中,,D、E是BC边上的点,将绕点A旋转,得到,连接.
(1)当时,时,求证:;
(2)当时,与有怎样的数量关系?请写出,并说明理由.
(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明)
3、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.
(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;
(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.
4、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).
(1)图中点B的坐标是______;
(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;
(3)四边形ABDC的面积是______;
(4)在y轴上找一点F,使,那么点F的所有可能位置是______.
5、随着课后服务的全面展开,某校组织了丰富多彩的社团活动.炯炯和露露分别打算从以下四个社团:A.快乐足球,B.数学历史,C.文学欣赏,D.棋艺鉴赏中,选择一个社团参加.
(1)炯炯选择数学历史的概率为