沪科版9年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、在平面直角坐标系中,已知点与点关于原点对称,则的值为()
A.4 B.-4 C.-2 D.2
2、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于()
A. B. C. D.
3、下列判断正确的是()
A.明天太阳从东方升起是随机事件;
B.购买一张彩票中奖是必然事件;
C.掷一枚骰子,向上一面的点数是6是不可能事件;
D.任意画一个三角形,其内角和是360°是不可能事件;
4、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为()
A.105° B.120° C.135° D.150°
5、下面四个立体图形中,从正面看是三角形的是()
A. B. C. D.
6、如图图案中,不是中心对称图形的是()
A. B. C. D.
7、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()
A.36cm B.27cm C.24cm D.15cm
8、下表记录了一名球员在罚球线上投篮的结果:
投篮次数
50
100
150
200
250
400
500
800
投中次数
28
63
87
122
148
242
301
480
投中频率
0.560
0.630
0.580
0.610
0.592
0.605
0.602
0.600
根据频率的稳定性,估计这名球员投篮一次投中的概率约是()
A.0.560 B.0.580 C.0.600 D.0.620
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有________个.
2、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.
3、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)
4、某射击运动员在同一条件下的射击成绩记录如下:
射击次数
20
40
100
200
400
1000
“射中9环以上”的次数
15
33
78
158
321
801
“射中9环以下”的频率
通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).
5、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.
6、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.
7、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.
三、解答题(7小题,每小题0分,共计0分)
1、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.
2、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).
(1)图中点B的坐标是______;
(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;
(3)四边形ABDC的面积是______;
(4)在y轴上找一点F,使,那么点F的所有可能位置是______.
3、一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3个座位上.
(1)甲坐在①号座位的概率是;
(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.
4、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.
(1)求的度数;
(2)若,且,求DF的长.
5、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别