基本信息
文件名称:达标测试沪科版9年级下册期末试卷及答案详解(名校卷).docx
文件大小:702.36 KB
总页数:33 页
更新时间:2025-05-16
总字数:约9.66千字
文档摘要

沪科版9年级下册期末试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、“2022年春节期间,中山市会下雨”这一事件为()

A.必然事件 B.不可能事件 C.确定事件 D.随机事件

2、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是()

A. B. C. D.

3、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为()

A.3 B.4 C.5 D.6

4、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()

A. B. C. D.

5、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是()

A.60 B.90 C.120 D.180

6、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()

A.AM=BM B.CM=DM C. D.

7、下列图形中,既是中心对称图形也是轴对称图形的是()

A. B. C. D.

8、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是()

A. B. C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.

2、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.

3、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)

4、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.

5、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为_____.

6、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).

7、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.

三、解答题(7小题,每小题0分,共计0分)

1、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.

(1)求A,B两点的坐标;

(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;

(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.

①求点F的坐标;

②直接写出点P的坐标.

2、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.

(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_______;恰好是黄球的概率为________.

(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.

3、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.

(1)求证:AD∥EC;

(2)若AD=6,求线段AE的长.

4、如图,已知在中,,D、E是BC边上的点,将绕点A旋转,得到,连接.

(1)当时,时,求证:;

(2)当时,与有怎样的数量关系?请写出,并说明理由.

(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明)

5、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.

已知点,,,.

(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;

(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;

(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直