基本信息
文件名称:强化训练-沪科版9年级下册期末试卷附完整答案详解(考点梳理).docx
文件大小:612.07 KB
总页数:25 页
更新时间:2025-05-16
总字数:约7.39千字
文档摘要

沪科版9年级下册期末试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、如图,该几何体的左视图是()

A. B. C. D.

2、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为()

A.3 B. C. D.

3、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()

A. B. C. D.

4、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()

A. B. C. D.

5、已知⊙O的半径为4,,则点A在()

A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定

6、下列图形中,既是轴对称图形又是中心对称图形的是()

A. B. C. D.

7、如图,点A、B、C在上,,则的度数是()

A.100° B.50° C.40° D.25°

8、“2022年春节期间,中山市会下雨”这一事件为()

A.必然事件 B.不可能事件 C.确定事件 D.随机事件

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、斛是中国古代的一种量器.据《汉书.律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”.如图所示,

问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.

2、如果点与点B关于原点对称,那么点B的坐标是______.

3、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.

4、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.

5、点(2,-3)关于原点的对称点的坐标为_____.

6、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.

7、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.

三、解答题(7小题,每小题0分,共计0分)

1、小明每天骑自行车.上学,都要通过安装有红、绿灯的4个十字路口.假设每个路口红灯和绿灯亮的时间相同.

(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)

(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为.(请直接写出答案)

2、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.

(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;

(2)求线段AB在旋转过程中扫过的面积.

3、如图,的直径cm,AM和BN是它的切线,DE与相切于点E,并与AM,BN分别相交于D,C两点.设,,求y关于x的函数解析式.

4、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△ABC.(需写出△ABC各顶点的坐标).

5、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:

(1)这次活动共调查了______人,并补充完整条形统计图;

(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;

(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.

6、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.

7