基本信息
文件名称:强化训练-沪科版9年级下册期末测试卷含答案详解【满分必刷】.docx
文件大小:938.26 KB
总页数:29 页
更新时间:2025-05-16
总字数:约7.75千字
文档摘要

沪科版9年级下册期末测试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、已知菱形ABCD的对角线交于原点O,点A的坐标为,点B的坐标为,则点D的坐标是()

A. B. C. D.

2、下列图形中,既是中心对称图形也是轴对称图形的是()

A. B. C. D.

3、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()

A.2个 B.3个 C.4个 D.5个

4、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积()

A.不变 B.面积扩大为原来的3倍

C.面积扩大为原来的9倍 D.面积缩小为原来的

5、下列语句判断正确的是()

A.等边三角形是轴对称图形,但不是中心对称图形

B.等边三角形既是轴对称图形,又是中心对称图形

C.等边三角形是中心对称图形,但不是轴对称图形

D.等边三角形既不是轴对称图形,也不是中心对称图形

6、下列事件中,是必然事件的是()

A.实心铁球投入水中会沉入水底

B.车辆随机到达一个路口,遇到红灯

C.打开电视,正在播放《大国工匠》

D.抛掷一枚硬币,正面向上

7、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()

A.50° B.60° C.40° D.30°

8、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()

A.36cm B.27cm C.24cm D.15cm

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70o,那么∠C的度数为_______.

2、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.

3、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.

4、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.

5、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.

6、在圆内接四边形ABCD中,,则的度数为______.

7、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.

三、解答题(7小题,每小题0分,共计0分)

1、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.

(1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;

(2)把图③补成只是中心对称图形,并把中心标上字母P.

2、4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.

(1)第一次抽取的卡片上数字是非负数的概率为______;

(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)

3、如图所示,是⊙的一条弦,,垂足为,交⊙于点,点在⊙上.

()若,求的度数.

()若,,求的长.

4、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.

(1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;

(2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;

(3)点G在y轴上.若直线上存在点H,