基本信息
文件名称:解析卷-沪科版9年级下册期末测试卷附答案详解【达标题】.docx
文件大小:904.34 KB
总页数:32 页
更新时间:2025-05-16
总字数:约9.73千字
文档摘要

沪科版9年级下册期末测试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、下列说法错误的是()

A.必然事件发生的概率是1 B.不可能事件发生的概率为0

C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生

2、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是()

A.2cm B.2.4cm C.3cm D.3.5cm

3、下列事件是随机事件的是()

A.抛出的篮球会下落

B.经过有交通信号灯的路口,遇到红灯

C.任意画一个三角形,其内角和是

D.400人中有两人的生日在同一天

4、下列判断正确的是()

A.明天太阳从东方升起是随机事件;

B.购买一张彩票中奖是必然事件;

C.掷一枚骰子,向上一面的点数是6是不可能事件;

D.任意画一个三角形,其内角和是360°是不可能事件;

5、下列语句判断正确的是()

A.等边三角形是轴对称图形,但不是中心对称图形

B.等边三角形既是轴对称图形,又是中心对称图形

C.等边三角形是中心对称图形,但不是轴对称图形

D.等边三角形既不是轴对称图形,也不是中心对称图形

6、如图是由5个相同的小正方体搭成的几何体,它的左视图是().

A. B. C. D.

7、下面四个立体图形中,从正面看是三角形的是()

A. B. C. D.

8、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是().

A.90° B.100° C.120° D.150°

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.

2、在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有________个.

3、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.

4、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.

5、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.

6、在Rt△ABC中,∠ACB=90°,AC=AB,点E、F分别是边CA、CB的中点,已知点P在线段EF上,联结AP,将线段AP绕点P逆时针旋转90°得到线段DP,如果点P、D、C在同一直线上,那么tan∠CAP=_______.

7、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:

种子个数

100

200

300

400

500

600

700

800

900

1000

发芽种子个数

94

188

281

349

435

531

625

719

812

902

发芽种子频率

(结果保留两位小数)

0.94

0.94

0.94

0.87

0.87

0.89

0.89

0.90

0.90

0.90

根据频率的稳定性,估计这种植物种子不发芽的概率是______.

三、解答题(7小题,每小题0分,共计0分)

1、下面是“过圆外一点作圆的切线”的尺规作图过程.

已知:⊙O和⊙O外一点P.

求作:过点P的⊙O的切线.作法:如图,

(1)连接OP;

(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;

(3)作直线MN,交OP于点C;

(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;

(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线

完成如下证明:

证明:连接OA,OB,

∵OP是⊙C直径,点A在⊙C上

∴∠OAP=90°(___________)(填推理的依据).

∴OA⊥AP.

又∵点A在⊙O上,