基本信息
文件名称:2024-2025学年沪科版9年级下册期末测试卷及参考答案详解(轻巧夺冠).docx
文件大小:1.1 MB
总页数:34 页
更新时间:2025-05-16
总字数:约8.93千字
文档摘要

沪科版9年级下册期末测试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、如图,A,B,C是正方形网格中的三个格点,则是()

A.优弧 B.劣弧 C.半圆 D.无法判断

2、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为()

A.1 B.2 C. D.

3、下列事件为必然事件的是()

A.明天要下雨

B.a是实数,|a|≥0

C.﹣3<﹣4

D.打开电视机,正在播放新闻

4、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为()

A.64° B.52° C.42° D.36°

5、下列各点中,关于原点对称的两个点是()

A.(﹣5,0)与(0,5) B.(0,2)与(2,0)

C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)

6、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为()

A.12 B.15 C.18 D.23

7、下列汽车标志中既是轴对称图形又是中心对称图形的是()

A. B. C. D.

8、下面四个立体图形中,从正面看是三角形的是()

A. B. C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如图,AB为的弦,半径于点C.若,,则的半径长为______.

2、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

3、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.

4、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是______(填写“平行投影”或“中心投影”)

5、斛是中国古代的一种量器.据《汉书.律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”.如图所示,

问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.

6、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)

7、某射击运动员在同一条件下的射击成绩记录如下:

射击次数

20

40

100

200

400

1000

“射中9环以上”的次数

15

33

78

158

321

801

“射中9环以下”的频率

通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).

三、解答题(7小题,每小题0分,共计0分)

1、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.

(1)求的度数;

(2)若,且,求DF的长.

2、如图,已知AB是的直径,点D为弦BC中点,过点C作切线,交OD延长线于点E,连结BE,OC.

(1)求证:.

(2)求证:BE是的切线.

3、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.

(1)求A,B两点的坐标;

(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;

(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.

①求点F的坐标;

②直接写出点P的坐标.

4、如图,在中,AB是直径,弦EF∥AB.

(1)请仅用无刻度的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)

(2)在(1)的条件下,连接OP交EF于点Q,,,求PQ的长度.

5、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)=0.已知:如图,点A(,0)