华东师大版7年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、下列图形中,既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
2、如图,将一副三角板平放在一平面上(点D在上),则的度数为()
A. B. C. D.
3、如图,于点,于点,于点,下列关于高的说法错误的是()
A.在中,是边上的高 B.在中,是边上的高
C.在中,是边上的高 D.在中,是边上的高
4、关于x的不等式的解集如图所示,则a的值是()
A.-1 B.1
C.2 D.3
5、下列说法正确的是()
A.x=3是2x+1>5的解 B.x=3是2x+1>5的唯一解
C.x=3不是2x+1>5的解 D.x=3是2x+1>5的解集
6、第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是参选的冬奥会会徽设计的部分图形,其中是轴对称图形的是()
A. B. C. D.
7、若,则不等式组的解集是()
A. B. C. D.无解
8、如图给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,这三个数的和不可能是()
A.69 B.54 C.27 D.40
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、新春佳节,小明和小颖去看望李老师,李老师用一种特殊的方式给他们分糖,李老师先东给小明1块,然后把糖盒里所剩糖的给小明,再拿给小颖2块,又把糖盒里所剩糖的给小颖.这样两人所得的糖块数相同.则李老师的糖盒中原来有_________块糖.
2、如果a>b,那么﹣2a___﹣2b.(填“>”或“<”)
3、小杰,小丽两人在400米的环形跑道上练习跑步,小杰每分钟跑300米,小丽每分钟跑150米,两人同时同地同向出发,__分钟后两人第一次相遇.
4、已知,则的值是__.
5、在不等式组的解集中,最大的整数解是______.
6、如图,在中,,将绕点逆时针旋转,得到△,连接.若,则______.
7、含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做___________.
三、解答题(7小题,每小题10分,共计70分)
1、在数学课上,老师展示了下列问题,请同学们分组讨论解决的方法.
中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有这样一个问题:“今有三人共车,二车空;二人共车,九人步,问人和车各几何?”这个题的意思是:今有若干人乘车.若每3人乘一辆车,则余2辆空车;若每2人乘一辆车.则余9人需步行,问共有多少辆车,多少人?
某小组选择用一元一次方程解决问题,请补全他们的分析过程:
第一步,设共有x辆车;
第二步,由“若每3人乘一辆车,则余2辆空车”,可得人数为(用含x的式子表示);
第三步,由“若每2人乘一辆车,则余9人需步行”.可得人数为(用含x的式子表示);
第四步,根据两种乘车方式的人数相等,列出方程为.
2、初一(1)班和初一(2)班的学生为了筹备班级元旦活动到超市上购买橙子,超市有促销活动,如果一次性所购橙子数量超过30千克,可以有一定程度的优惠,价格如下:1班的学生先购买一次,发现数量不够,去超市再次购买,第二次购买数量多于第一次,两次共计购买48千克,2班的学生一次性购买橙子48千克.
原价
优惠价
每千克价格
3元
2.5元
(1)若1班的学生第一次购买16千克,第二次购买32千克,则2班比1班少付多少元?
(2)若1班两次共付费126元,则1班第一次、第二次分別购买橙子多少千克?
3、解方程:
(1);
(2)
4、对于数轴上给定两点M、N以及一条线段PQ,给出如下定义:若线段MN的中点R在线段PQ上(点R能与点P或Q重合),则称点M与点N关于线段PQ“中位对称”.如图为点M与点N关于线段PQ“中位对称”的示意图.
已知:点O为数轴的原点,点A表示的数为﹣1,点B表示的数为2
(1)若点C、D、E表示的数分别为﹣3,1.5,4,则在C、D、E三点中,与点A关于线段OB“中位对称”;点F表示的