沪科版9年级下册期末试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、下面的图形中既是轴对称图形又是中心对称图形的是()
A. B. C. D.
2、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()
A.36cm B.27cm C.24cm D.15cm
3、下列各点中,关于原点对称的两个点是()
A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
4、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是()
A. B. C.5 D.5
5、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()
A. B. C. D.
6、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为()
A.3 B.4 C.5 D.6
7、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是().
A.90° B.100° C.120° D.150°
8、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为()
A.105° B.120° C.135° D.150°
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、从﹣2,1两个数中随机选取一个数记为m,再从﹣1,0,2三个数中随机选取一个数记为n,则m、n的取值使得一元二次方程x2﹣mx+n=0有两个不相等的实数根的概率是_____.
2、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.
3、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______.
4、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.
5、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.
6、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.
7、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.
三、解答题(7小题,每小题0分,共计0分)
1、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接.
(1)如图1,当、、三点共线时,连接,若,求的长;
(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接、交于点.若,请直接写出的值.
2、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_______;恰好是黄球的概率为________.
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.
3、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.
(1)求弦AC的长.
(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
(3)当OE=1时,求点A与点D之间的距离(直接写出答案).
4、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分.
(1)求证:是切线;
(2)若,,求