沪科版9年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、平面直角坐标系中点关于原点对称的点的坐标是()
A. B. C. D.
2、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为()
A.25° B.80° C.130° D.100°
3、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是()
A. B. C. D.
4、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是()
A.个 B.个 C.个 D.个
5、如图是下列哪个立体图形的主视图()
A. B.
C. D.
6、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()
A.1cm B.2cm C.2cm D.4cm
7、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为()
A. B. C. D.8
8、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为()
A.8 B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.
2、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为_____.
3、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.
4、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.
5、如图,正三角形ABC的边长为,D、E、F分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为______.
6、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).
7、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70o,那么∠C的度数为_______.
三、解答题(7小题,每小题0分,共计0分)
1、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,?ABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.
2、一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸取一个小球后,不放回,再随机摸出一个小球,分别求下列事件的概率:
(1)两次取出的小球标号和为奇数;
(2)两次取出的小球标号和为偶数.
3、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.
(1)如图1,点E在点B的左侧运动.
①当,时,则___________°;
②猜想线段CA,CF与CE之间的数量关系为____________.
(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.
4、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.
(1)求证:.
(2)若,,求BD.
5、如图,已知弓形的长,弓高,(,并经过圆心O).
(1)请利用尺规作图的方法找到圆心O;
(2)求弓形所在的半径的长.
6、如图,是⊙的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H.
(1)判断与⊙的位置关系并说明理由;
(2)若,求弧的长.
7、如图所示,是⊙的一条弦,,垂足为,交⊙于点,点在⊙上.
()若,求的度数.
()若,,求的长.
-参考答案-
一、单选题
1、B
【分析】
根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:平面直角坐标系中点关于原点对称的点的坐标是
故选B
【点睛】
本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
2、D
【分析】
根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
【详解】
解:∵四边形ABCD内接于