基本信息
文件名称:2024-2025学年沪科版9年级下册期末试题附答案详解【B卷】.docx
文件大小:843.04 KB
总页数:32 页
更新时间:2025-05-16
总字数:约9.17千字
文档摘要

沪科版9年级下册期末试题

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、如图是下列哪个立体图形的主视图()

A. B.

C. D.

2、下列语句判断正确的是()

A.等边三角形是轴对称图形,但不是中心对称图形

B.等边三角形既是轴对称图形,又是中心对称图形

C.等边三角形是中心对称图形,但不是轴对称图形

D.等边三角形既不是轴对称图形,也不是中心对称图形

3、如图,是的直径,弦,垂足为,若,则()

A.5 B.8 C.9 D.10

4、下表记录了一名球员在罚球线上投篮的结果:

投篮次数

50

100

150

200

250

400

500

800

投中次数

28

63

87

122

148

242

301

480

投中频率

0.560

0.630

0.580

0.610

0.592

0.605

0.602

0.600

根据频率的稳定性,估计这名球员投篮一次投中的概率约是()

A.0.560 B.0.580 C.0.600 D.0.620

5、如图,该几何体的左视图是()

A. B. C. D.

6、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为()

A. B.

C. D.

7、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的()

A.①②③ B.①②④ C.①③④ D.②③④

8、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是()

A.① B.② C.③ D.①或③

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如果点与点B关于原点对称,那么点B的坐标是______.

2、某射击运动员在同一条件下的射击成绩记录如下:

射击次数

20

40

100

200

400

1000

“射中9环以上”的次数

15

33

78

158

321

801

“射中9环以下”的频率

通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).

3、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.

4、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.

5、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)

6、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.

7、如图,正三角形ABC的边长为,D、E、F分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为______.

三、解答题(7小题,每小题0分,共计0分)

1、小宇和小伟玩“石头、剪刀、布”的游戏.这个游戏的规则是:“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,手势相同不分胜负.如果二人同时随机出手(分别出三种手势中的一种手势)一次,那么小宇获胜的概率是多少?

2、下面是“过圆外一点作圆的切线”的尺规作图过程.

已知:⊙O和⊙O外一点P.

求作:过点P的⊙O的切线.作法:如图,

(1)连接OP;

(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;

(3)作直线MN,交OP于点C;

(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;

(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线

完成如下证明:

证明:连接OA,OB,

∵OP是⊙C直径,点A在⊙C上

∴∠OAP=90°(___________)(填推理的依据).

∴OA⊥AP.

又∵点A在⊙O上,

∴直线PA是⊙O的切线(_____