沪科版9年级下册期末测试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、下列图形中,是中心对称图形,但不是轴对称图形的是()
A. B. C. D.
2、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是()
A.60 B.90 C.120 D.180
3、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()
A.50° B.60° C.40° D.30°
4、如图,,,,都是上的点,,垂足为,若,则的度数为()
A. B. C. D.
5、如图是下列哪个立体图形的主视图()
A. B.
C. D.
6、如图,是的直径,弦,垂足为,若,则()
A.5 B.8 C.9 D.10
7、如图,是△ABC的外接圆,已知,则的大小为()
A.55° B.60° C.65° D.75°
8、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是().
A.90° B.100° C.120° D.150°
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
2、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
3、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)
4、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.
5、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
6、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有_____(填写所有正确结论的序号).
7、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.
三、解答题(7小题,每小题0分,共计0分)
1、如图1,在平面直角坐标系中,二次函数的图象经过点,过点A作轴,做直线AC平行x轴,点D是二次函数的图象与x轴的一个公共点(点D与点O不重合).
(1)求点D的横坐标(用含b的代数式表示)
(2)求的最大值及取得最大值时的二次函数表达式.
(3)在(2)的条件下,如图2,P为OC的中点,在直线AC上取一点M,连接PM,做点C关于PM的对称点N,①连接AN,求AN的最小值.
②当点N落在抛物线的对称轴上,求直线MN的函数表达式.
2、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:
(1)这次活动共调查了______人,并补充完整条形统计图;
(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;
(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.
3、如图,AB是的直径,CD是的一条弦,且于点E.
(1)求证:;
(2)若,,求的半径.
4、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.
(1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段A′D之间的数量关系,并证明你的结论.
(2)将Rt△ABC继续旋转到图2的位置时,(1)中的结论是否成立