沪科版9年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、下列说法错误的是()
A.必然事件发生的概率是1 B.不可能事件发生的概率为0
C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生
2、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为()
A.1 B.2 C. D.
3、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()
A.AM=BM B.CM=DM C. D.
4、平面直角坐标系中点关于原点对称的点的坐标是()
A. B. C. D.
5、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为()
A.3 B. C. D.
6、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是()
A. B. C.5 D.5
7、下列事件中,是必然事件的是()
A.实心铁球投入水中会沉入水底
B.车辆随机到达一个路口,遇到红灯
C.打开电视,正在播放《大国工匠》
D.抛掷一枚硬币,正面向上
8、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是()
A. B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,,点P是OC上的一个动点,则BP+DP的最小值为______.
2、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.
3、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.
4、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)
5、在平面直角坐标系中,点关于原点对称的点的坐标是______.
6、某射击运动员在同一条件下的射击成绩记录如下:
射击次数
20
40
100
200
400
1000
“射中9环以上”的次数
15
33
78
158
321
801
“射中9环以下”的频率
通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).
7、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是_____.
三、解答题(7小题,每小题0分,共计0分)
1、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.
(1)求证:直线CD是⊙O的切线;
(2)若,,求OC的长.
2、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分.
(1)求证:是切线;
(2)若,,求的半径和的长.
3、下面是“过圆外一点作圆的切线”的尺规作图过程.
已知:⊙O和⊙O外一点P.
求作:过点P的⊙O的切线.作法:如图,
(1)连接OP;
(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;
(3)作直线MN,交OP于点C;
(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;
(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线
完成如下证明:
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上
∴∠OAP=90°(___________)(填推理的依据).
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(___________)(填推理的依据).
同理可证直线PB是⊙O的切线.
4、如图1,在平面直角坐标系中,二次函数的图象经过点,过点A作轴,做直线AC平行x轴,点D是二次函数的图象与x轴的一个公共点(点D与点O不重合).
(1)求点D的横坐标(用含b的代数式表示)
(2)求的最大值及取得最大值时的二次函数表达式.
(3)在(2)的条件下,如图2,P为OC的中点,在直线AC上取一点M,连接PM,做点C关于PM的对称点N,①连接AN,求AN的最小值.
②当点N落在抛物线的对称轴上,求直线MN的函数表达式.
5、已知:Rt△ABC中,∠ACB=90°,∠A