沪科版9年级下册期末试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是()
A.1 B. C. D.
2、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为()
A.1 B.2 C. D.
3、图2是由图1经过某一种图形的运动得到的,这种图形的运动是()
A.平移 B.翻折 C.旋转 D.以上三种都不对
4、下列汽车标志中既是轴对称图形又是中心对称图形的是()
A. B. C. D.
5、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是()
A. B. C. D.
6、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是().
A.90° B.100° C.120° D.150°
7、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为()
A. B.
C. D.
8、已知⊙O的半径为4,,则点A在()
A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.
2、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.
3、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.
4、如图,AB为的弦,半径于点C.若,,则的半径长为______.
5、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.
6、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).
7、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.
三、解答题(7小题,每小题0分,共计0分)
1、太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率.
(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;
(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率.
2、新冠病毒在全球肆虐,疫情防控刻不容缓.某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分).学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计.下面提供了部分信息.
抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.
抽取的40名学生成绩分析表:
年级
七年级
八年级
平均分
8
8.1
众数
8
b
中位数
a
8
方差
1.9
1.89
请根据以上信息,解答下列问题:
(1)直接写出上表中a,b的值;
(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?
(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率.
3、小宇和小伟玩“石头