沪科版9年级下册期末试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、如图,与相切于点,连接交于点,点为优弧上一点,连接,,若,的半径,则的长为()
A.4 B. C. D.1
2、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是()
A. B.
C. D.
3、如图,几何体的左视图是()
A. B. C. D.
4、下面四个立体图形中,从正面看是三角形的是()
A. B. C. D.
5、下列汽车标志中既是轴对称图形又是中心对称图形的是()
A. B. C. D.
6、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是()
A.80° B.70° C.60° D.50°
7、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是()
A.1 B. C. D.
8、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()
A. B. C. D.
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是______(填写“平行投影”或“中心投影”)
2、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.
3、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.
4、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是________.
5、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.
6、如果点与点B关于原点对称,那么点B的坐标是______.
7、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.
三、解答题(7小题,每小题0分,共计0分)
1、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.
(1)求弦AC的长.
(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
(3)当OE=1时,求点A与点D之间的距离(直接写出答案).
2、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.
(1)求A,B两点的坐标;
(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;
(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.
①求点F的坐标;
②直接写出点P的坐标.
3、在△ABC与△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.
(1)如图1,若点D与A重合,AC与EF交于P,且∠CAE=30°,CE,求EP的长;
(2)如图2,若点D与C重合,EF与BC交于点M,且BM=CM,连接AE,且∠CAE=∠MCE,求证:AE+MF=CE;
(3)如图3,若点D与A重合,连接BE,且∠ABE∠ABC,连接BF,CE,当BF+CE最小时,直接出的值.
4、在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.
实验种植数(粒)
1
5
50
100
200
500
1000
2000
3000
发芽频数
0
4
45
92
188
476
951
1900
2850
(1)估计该麦种的发芽概率.
(2)如果播种该种小