沪科版9年级下册期末试题
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、“2022年春节期间,中山市会下雨”这一事件为()
A.必然事件 B.不可能事件 C.确定事件 D.随机事件
2、下列事件是随机事件的是()
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
3、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()
A.2个 B.3个 C.4个 D.5个
4、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为()
A. B. C.3 D.
5、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是()
A.30° B.36° C.60° D.72°
6、如图,AB,CD是⊙O的弦,且,若,则的度数为()
A.30° B.40° C.45° D.60°
7、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是()
A.60 B.90 C.120 D.180
8、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为()
A.10 B.12 C.15 D.18
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,OH=1,则⊙O的半径是______.
2、如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,,点P是OC上的一个动点,则BP+DP的最小值为______.
3、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.
4、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:
(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;
(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.
5、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数n
1000
1500
2500
4000
8000
15000
20000
30000
成活的棵数m
865
1356
2220
3500
7056
13170
17580
26430
成活的频率
0.865
0.904
0.888
0.875
0.882
0.878
0.879
0.881
估计该种幼树在此条件下移植成活的概率为_______.
6、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
7、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)
三、解答题(7小题,每小题0分,共计0分)
1、4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是非负数的概率为______;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)
2、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.
(1)图1中的“弦图”的四个直角三角形组成的图形是对称图形(填“轴”或“中心”).
(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:
①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;
②图2中所设计的图