基本信息
文件名称:考点解析沪科版9年级下册期末试卷及答案详解(考点梳理).docx
文件大小:902.93 KB
总页数:41 页
更新时间:2025-05-16
总字数:约1.2万字
文档摘要

沪科版9年级下册期末试卷

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、下列事件为必然事件的是()

A.明天要下雨

B.a是实数,|a|≥0

C.﹣3<﹣4

D.打开电视机,正在播放新闻

2、如图,,,,都是上的点,,垂足为,若,则的度数为()

A. B. C. D.

3、在平面直角坐标系中,已知点与点关于原点对称,则的值为()

A.4 B.-4 C.-2 D.2

4、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是().

A.90° B.100° C.120° D.150°

5、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是()

A. B.四边形EFGH是菱形

C. D.

6、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为()

A.1 B.2 C.3 D.4

7、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的()

A.①②③ B.①②④ C.①③④ D.②③④

8、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为()

A.10 B.12 C.15 D.18

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.

2、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.

3、点(2,-3)关于原点的对称点的坐标为_____.

4、一个五边形共有__________条对角线.

5、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.

6、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.

7、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.

(1)点M的纵坐标为______;

(2)当最大时,点P的坐标为______.

三、解答题(7小题,每小题0分,共计0分)

1、在直角坐标平面内,三个顶点的坐标分别为、、(正方形网格中每个小正方形的边长是一个单位长度).

(1)将向下平移4个单位长度得到的,则点的坐标是____________;

(2)以点B为位似中心,在网格上画出,使与位似,且位似比为2:1,求点的坐标;

(3)若是外接圆,求的半径.

2、如图1,在中,,,点D为AB边上一点.

(1)若,则______;

(2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;

(3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF.直接写出BF的最小值.

3、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与△PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F.

(1)如图,当点P在线段AB上运动时,若∠DBE=30°,PB=2,求DE的长;

(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明.

4、在△ABC与△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.

(1)如图1,若点D与A重合,AC与EF交于P,且∠CAE=30°,CE,求EP的长;

(2)如图2,若点D与C重合,EF与BC交于点M,且