基本信息
文件名称:难点详解沪科版9年级下册期末试题附参考答案详解【达标题】.docx
文件大小:662.13 KB
总页数:26 页
更新时间:2025-05-16
总字数:约7.95千字
文档摘要

沪科版9年级下册期末试题

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是()

A. B. C. D.

2、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为()

A.1 B.2 C. D.

3、下列图形中,是中心对称图形,但不是轴对称图形的是()

A. B. C. D.

4、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为()

A.12 B.15 C.18 D.23

5、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()

A. B. C. D.

6、如图,几何体的左视图是()

A. B. C. D.

7、下列图形中,可以看作是中心对称图形的是()

A. B.

C. D.

8、如图,AB,CD是⊙O的弦,且,若,则的度数为()

A.30° B.40° C.45° D.60°

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、如果点与点B关于原点对称,那么点B的坐标是______.

2、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是_____.

3、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.

4、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70o,那么∠C的度数为_______.

5、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.

6、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.

7、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).

三、解答题(7小题,每小题0分,共计0分)

1、一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3个座位上.

(1)甲坐在①号座位的概率是;

(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.

2、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).

(1)直接写出点B关于原点对称的点B′的坐标:;

(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;

(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.

3、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲.乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).

甲种品牌化妆品

两红

一红一白

两白

礼金券(元)

6

12

6

乙种品牌化妆品

两红

一红一白

两白

礼金券(元)

12

6

12

(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;

(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.

4、如图,在⊙O中,弦AC与弦BD交于点P,AC=BD.

(1)求证AP=BP;

(2)连接AB,若AB=8,BP=5,DP=3,求⊙O的半径.

5、已知线段AB,用平移、旋转、轴对称画出一个以AB为一边,一个内角是30°的菱形.(不写画法,保留作图痕迹).

6、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.

(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;

(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.

7、在中,,,过点A作BC的垂线AD,垂足为D